1. [1] S. M. Slavens, "Microplasma Ball Reactor for Liquid Hydrocarbon Conversion," 2014.
2. [2] R. Ganapathi, A. Henni, and E. Shirif, "Solubility of carbon dioxide and ethane in Lloydminster heavy oil: Experimental study and modelling," The Canadian Journal of Chemical Engineering, vol. 100, no. 6, pp. 1235-1243, 2022. [
DOI:10.1002/cjce.24327]
3. [3] R. Santos, W. Loh, A. Bannwart, and O. Trevisan, "An overview of heavy oil properties and its recovery and transportation methods," Brazilian Journal of Chemical Engineering, vol. 31, pp571-590., 2014. [
DOI:10.1590/0104-6632.20140313s00001853]
4. [4] S. Houda, C. Lancelot, P. Blanchard, L. Poinel, and C. Lamonier, "Oxidative desulfurization of heavy oils with high sulfur content: A review," Catalysts, vol. 8, no. 9, p. 344, 2018. [
DOI:10.3390/catal8090344]
5. [5] M. Al-Samhan, J. Al-Fadhli, A. M. Al-Otaibi, F. Al-Attar, R. Bouresli, and M. S. Rana, "Prospects of refinery switching from conventional to integrated: An opportunity for sustainable investment in the petrochemical industry," Fuel, vol. 310, p. 122161, 2022. [
DOI:10.1016/j.fuel.2021.122161]
6. [6] J. D. Ampah et al., "Study on characteristics of marine heavy fuel oil and low carbon alcohol blended fuels at different temperatures," Fuel, vol. 310, p. 122307, 2022. [
DOI:10.1016/j.fuel.2021.122307]
7. [7] N. Gao, J. Li, C. Quan, and H. Tan, "Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive," Fuel, vol. 266, p. 117090, 2020. [
DOI:10.1016/j.fuel.2020.117090]
8. [8] S. S. Bello et al., "A review on the reaction mechanism of hydrodesulfurization and hydrodenitrogenation in heavy oil upgrading," Energy & Fuels, vol. 35, no. 14, pp 10998-11016. 2021 [
DOI:10.1021/acs.energyfuels.1c01015]
9. [9] R. Prajapati, K. Kohli, and S. K. Maity, "Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review," Fuel, vol. 288, p. 119686, 2021. [
DOI:10.1016/j.fuel.2020.119686]
10. [10] H. M. Nguyen, A. Omidkar, W. Li, Z. Li, and H. Song, "Non-thermal plasma catalysis driven sustainable pyrolysis oil upgrading to jet fuel under near-ambient conditions," EES Catalysis, vol. 2, no. 2, pp. 647-663, 2024. [
DOI:10.1039/D3EY00309D]
11. [11] H. Hao, P. Lian, J. Gong, and R. Gao, "Theoretical study on the hydrogenation mechanisms of model compounds of heavy oil in a plasma-driven catalytic system," Catalysts, vol. 8, no. 9, p. 381, 2018. [
DOI:10.3390/catal8090381]
12. [12] P. J. Bruggeman et al., "Plasma-liquid interactions: a review and roadmap," Plasma sources science and technology, vol. 25, no. 5, p. 053002, 2016.
13. [13] A. D'Angola, G. Colonna, and E. Kustova, "Thermal and non-thermal plasmas at atmospheric pressure," vol. 10, ed: Frontiers Media SA, p. 852905., 2022. [
DOI:10.3389/fphy.2022.852905]
14. [14] J. Amouroux and M. Nikravech, "Process for the hydrocracking of a hydrocarbon feedstock and hydrocracking plant for carrying," ed: Google Patents, 1990.
15. [15] H. Gil, "Method of upgrading bitumen and heavy oil," ed: Google Patents, 2009.
16. [16] Y. Matsui, S. Kawakami, K. Takashima, S. Katsura, and A. Mizuno, "Liquid-phase fuel re-forming at room temperature using nonthermal plasma," Energy & fuels, vol. 19, no. 4, pp. 1561-1565, 2005. [
DOI:10.1021/ef0497816]
17. [17] J. Norem, Z. Insepov, and A. Hassanein, "An integrated approach to understanding RF vacuum arcs," Scientific Reports, vol. 11, no. 1, p. 2361, 2021. [
DOI:10.1038/s41598-021-81947-5] [
PMID] [
]
18. [18] Y. Le Godec and S. Le Floch, "Recent developments of high-pressure spark plasma sintering: an overview of current applications, challenges and future directions," Materials, vol. 16, no. 3, p. 997, 2023. [
DOI:10.3390/ma16030997] [
PMID] [
]
19. [19] H. Lesueur, A. Czernichowski, and J. Chapelle, "Electrically assisted partial oxidation of methane," International journal of hydrogen energy, vol. 19, no. 2, pp. 139-144, 1994. [
DOI:10.1016/0360-3199(94)90118-X]
20. [20] P. Bruggeman and C. Leys, "Non-thermal plasmas in and in contact with liquids," Journal of Physics D: Applied Physics, vol. 42, no. 5, p. 053001, 2009. [
DOI:10.1088/0022-3727/42/5/053001]
21. [21] I. E. Agency, World energy outlook. OECD/IEA Paris, 2009.
22. [22] C. Guizani, F. E. Sanz, and S. Salvador, "Influence of temperature and particle size on the single and mixed atmosphere gasification of biomass char with H2O and CO2," Fuel Processing Technology, vol. 134, pp. 175-188, 2015. [
DOI:10.1016/j.fuproc.2015.01.031]
23. [23] K. Göransson, U. Söderlind, J. He, and W. Zhang, "Review of syngas production via biomass DFBGs," Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 482-492, 2011. [
DOI:10.1016/j.rser.2010.09.032]
24. [24] G. Council, "GASIFICATION The waste-to-energy solution," ed, 2014.
25. [25] V. Galvita, V. Messerle, and A. Ustimenko, "Hydrogen production by coal plasma gasification for fuel cell technology," International Journal of Hydrogen Energy, vol. 32, no. 16, pp 3899-3906., 2007 [
DOI:10.1016/j.ijhydene.2007.05.039]