logo
دوره 8، شماره 1 - ( بهار و تابستان 1402 )                   جلد 8 شماره 1 صفحات 61-50 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

noori F, Azarian A. Investigating plasmonic and thermoplasmonic properties of asymmetric hexagonal heterodimer nanoparticles and isosbestic points. JMRPh 2023; 8 (1) :50-61
URL: http://jmrph.khu.ac.ir/article-1-219-fa.html
نوری فهیمه، آذریان عباس. بررسی خواص پلاسمونیکی و ترموپلاسمونیکی نانوذرات دوتایی شش گوشی نامتقارن ناهمگن و نقاط ایزوسبستیک. نشریه پژوهش های نوین فیزیک. 1402; 8 (1) :50-61

URL: http://jmrph.khu.ac.ir/article-1-219-fa.html


دانشگاه قم
چکیده:   (69 مشاهده)
در سال های اخیر، علاقه‌روزافزونی به استفاده از نانوذرات پلاسمونیک به عنوان نانومنابع حرارتی با قابلیت کنترل از راه دور توسط نور به‌وجود آمده است که منجر به پیدایش علم ترموپلاسمونیک شده‌است. در این راستا، نانوذرات با اشکال، ترکیبات و مواد مختلف، توانایی ذاتی ایجاد تولید گرمایی محدود در مقیاس نانو را دارند. بنابراین، در این مقاله، خواص پلاسمونیک و ترموپلاسمونیک نانوذرات دوتایی حلقوی شش گوشی به صورت ناهمگن از ترکیب‌های Ag-Au ، Cu-Ag و Cu-Au بررسی شده است. نقاط ایزوبستک و انرژی کوپل‌شدگی ناشی از شکافی که در مدهای پلاسمونیک طیف جذبی به دلیل تغییر قطبش نور ایجاد می شود بررسی و محاسبه شده است. نتایج به‌دست‌آمده نشان  می‌دهنده که با ترکیب نانوذرات دوتایی ناهمگن از جنس  نقره و مس در قطبش نور موازی با محور دایمر می‌توان میدان الکتریکی را تا 293 برابر تقویت کرد و بیشترین تغییر دما در نانوذرات دوتایی ناهمگن Ag-Au با مقدار Tmax=417℃  در قطبش L مربوط می‌شود.
 
متن کامل [PDF 1512 kb]   (49 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/1/12 | پذیرش: 1403/9/1 | انتشار: 1402/6/10

فهرست منابع
1. [1] Baffou, G. "Thermodynamics of metal nanoparticles." Thermoplasmonics: Heating Metal Nanoparticles Using Light; Cambridge University Press: Cambridge, UK ,36-80 (2017). [DOI:10.1017/9781108289801]
2. [2] Noguez, Cecilia. "Surface plasmons on metal nanoparticles: the influence of shape and physical environment." The Journal of Physical Chemistry C 111, no. 10, 3806-3819 (2007). [DOI:10.1021/jp066539m]
3. [3] Baffou, Guillaume, Frank Cichos, and Romain Quidant. "Applications and challenges of thermoplasmonics." Nature Materials 19, no. 9, 946-958 (2020). [DOI:10.1038/s41563-020-0740-6] [PMID]
4. [4] Govorov, Alexander O., and Hugh H. Richardson. "Generating heat with metal nanoparticles." Nano today 2, no. 1, 30-38 (2007). [DOI:10.1016/S1748-0132(07)70017-8]
5. [5] Lenert, Andrej, David M. Bierman, Youngsuk Nam, Walker R. Chan, Ivan Celanović, Marin Soljačić, and Evelyn N. Wang. "A nanophotonic solar thermophotovoltaic device." Nature nanotechnology 9, no. 2, 126-130 (2014). [DOI:10.1038/nnano.2013.286] [PMID]
6. [6] Challener, W. A., Chubing Peng, A. V. Itagi, D. Karns, Wei Peng, Yingguo Peng, XiaoMin Yang et al. "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer." Nature photonics 3, no. 4, 220-224 (2009). [DOI:10.1038/nphoton.2009.26]
7. [7] Brick, Thomas. "Hot-carriers and losses in plasmonic nanostructures." (2019).
8. [8] Linic, Suljo, Phillip Christopher, and David B. Ingram. "Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy." Nature materials 10, no. 12, 911-921 (2011). [DOI:10.1038/nmat3151] [PMID]
9. [9] Richardson, Hugh H., Michael T. Carlson, Peter J. Tandler, Pedro Hernandez, and Alexander O. Govorov. "Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions." Nano letters 9, no. 3, 1139-1146 (2009). [DOI:10.1021/nl8036905] [PMID] []
10. [10] Cognet, Laurent, Catherine Tardin, David Boyer, Daniel Choquet, Philippe Tamarat, and Brahim Lounis. "Single metallic nanoparticle imaging for protein detection in cells." Proceedings of the National Academy of Sciences 100, no. 20, 11350-11355 (2003). [DOI:10.1073/pnas.1534635100] [PMID] []
11. [11] Assanov, Gani S., Z. Zh Zhanabaev, Alexander O. Govorov, and Alexander B. Neiman. "Modelling of photo-thermal control of biological cellular oscillators." The European Physical Journal Special Topics 222, 2697-2704 (2013). [DOI:10.1140/epjst/e2013-02049-0] [PMID] []
12. [12] Wang, Mingsong, Chenglong Zhao, Xiaoyu Miao, Yanhui Zhao, Joseph Rufo, Yan Jun Liu, Tony Jun Huang, and Yuebing Zheng. "Plasmofluidics: Merging Light and Fluids at the Micro‐/Nanoscale." small 11, no. 35, 4423-4444 (2015). [DOI:10.1002/smll.201500970] [PMID] []
13. [13] Hirsch, Leon R., R. Jason Stafford, J. A. Bankson, Scott R. Sershen, B. Rivera, R. E. Price, John D. Hazle, Naomi J. Halas, and Jennifer L. West. "Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance." Proceedings of the National Academy of Sciences 100, no. 23, 13549-13554 (2003). [DOI:10.1073/pnas.2232479100] [PMID] []
14. [14] Stern, Joshua M., Jennifer Stanfield, Wareef Kabbani, Jer-Tsong Hsieh, and Jeffrey A. Cadeddu. "Selective prostate cancer thermal ablation with laser activated gold nanoshells." The Journal of urology 179, no. 2, 748-753 (2008). [DOI:10.1016/j.juro.2007.09.018] [PMID]
15. [15] Ali-Khan, Sarah E., Liam W. Harris, and E. Richard Gold. "Motivating participation in open science by examining researcher incentives." Elife 6, e29319 (2017). [DOI:10.7554/eLife.29319] [PMID] []
16. [16] Paithankar, Dilip Y., Fernanda H. Sakamoto, William A. Farinelli, Garuna Kositratna, Richard D. Blomgren, Todd J. Meyer, Linda J. Faupel et al. "Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles." Journal of Investigative Dermatology 135, no. 7, 1727-1734 (2015). [DOI:10.1038/jid.2015.89] [PMID] []
17. [17] Ali, Moustafa RK, Hala R. Ali, Carl R. Rankin, and Mostafa A. El-Sayed. "Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy." Biomaterials 102, 1-8 (2016). [DOI:10.1016/j.biomaterials.2016.06.017] [PMID]
18. [18] Cheheltani, Rabee, Rami M. Ezzibdeh, Peter Chhour, Kumidini Pulaparthi, Johoon Kim, Martina Jurcova, Jessica C. Hsu et al. "Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging." Biomaterials 102, 87-97 (2016). [DOI:10.1016/j.biomaterials.2016.06.015] [PMID] []
19. [19] Tang, Janika, Vaibhav Thakore, and Tapio Ala-Nissila. "Plasmonically enhanced reflectance of heat radiation from low-bandgap semiconductor microinclusions." Scientific Reports 7, no. 1, 1-20 (2017). [DOI:10.1038/s41598-017-05630-4] [PMID] []
20. [20] Baffou, G., R. Quidant, and Ch Girard. "Heat generation in plasmonic nanostructures: Influence of morphology." Applied Physics Letters 94, no. 15, 153109 (2009). [DOI:10.1063/1.3116645]
21. [21] Chen, Fuyi, Negash Alemu, and Roy L. Johnston. "Collective plasmon modes in a compositionally asymmetric nanoparticle dimer." Aip Advances 1, no. 3, 032134 (2011). [DOI:10.1063/1.3628346]
22. [22] Alabastri, Alessandro, Salvatore Tuccio, Andrea Giugni, Andrea Toma, Carlo Liberale, Gobind Das, Francesco De Angelis, Enzo Di Fabrizio, and Remo Proietti Zaccaria. "Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature." Materials 6, no. 11, 4879-4910 (2013). [DOI:10.3390/ma6114879] [PMID] []
23. [23] Johnson, Peter B., and R-WJPrB Christy. "Optical constants of the noble metals." Physical review B 6, no. 12, 4370 (1972). [DOI:10.1103/PhysRevB.6.4370]
24. [24] Baffou, Guillaume, and Romain Quidant. "Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat." Laser & Photonics Reviews 7, no. 2, 171-187 (2013). [DOI:10.1002/lpor.201200003]
25. [25] Bohren, Craig F., and Donald R. Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, 2008.
26. [26] Palik, Edward D., ed. Handbook of optical constants of solids. Vol. 3. Academic press, 1998. [DOI:10.1016/B978-0-08-055630-7.50004-3]
27. [27] Kravets, V. G., R. Jalil, Y-J. Kim, D. Ansell, D. E. Aznakayeva, B. Thackray, L. Britnell et al. "Graphene-protected copper and silver plasmonics." Scientific reports 4, no. 1, 5517 (2014). [DOI:10.1038/srep05517] [PMID] []
28. [28] Lalisse, Adrien, Gilles Tessier, Jérome Plain, and Guillaume Baffou. "Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion." The Journal of Physical Chemistry C 119, no. 45, 25518-25528 (2015). [DOI:10.1021/acs.jpcc.5b09294]
29. [29] McMahon, M. D., R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund. "Rapid tarnishing of silver nanoparticles in ambient laboratory air." Applied Physics B 80, 915-921 (2005). [DOI:10.1007/s00340-005-1793-6]
30. [30] Guler, Urcan, and Rasit Turan. "Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles." Optics express 18, no. 16 17322-17338 (2010). [DOI:10.1364/OE.18.017322] [PMID]
31. [31] Stockman, Mark I., Sergey V. Faleev, and David J. Bergman. "Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? " Physical review letters 87, no. 16, 167401 (2001). [DOI:10.1103/PhysRevLett.87.167401] [PMID]
32. [32] Fano, Ugo. "Effects of configuration interaction on intensities and phase shifts." Physical review 124, no. 6, 1866 (1961). [DOI:10.1103/PhysRev.124.1866]
33. [33] Pakizeh, Tavakol, and Mikael Kall. "Unidirectional ultracompact optical nanoantennas." Nano letters 9, no. 6, 2343-2349 (2009). [DOI:10.1021/nl900786u] [PMID]
34. [34] Yuan, Hsiao-Kuan, Uday K. Chettiar, Wenshan Cai, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir P. Drachev, and Vladimir M. Shalaev. "A negative permeability material at red light." Optics Express 15, no. 3, 1076-1083 (2007). [DOI:10.1364/OE.15.001076] [PMID]
35. [35] Cai, Wenshan, Uday K. Chettiar, Hsiao-Kuan Yuan, Vashista C. de Silva, Alexander V. Kildishev, Vladimir P. Drachev, and Vladimir M. Shalaev. "Metamagnetics with rainbow colors." Optics express 15, no. 6, 3333-3341 (2007). [DOI:10.1364/OE.15.003333] [PMID]
36. [36] Feth, Nils, Christian Enkrich, Martin Wegener, and Stefan Linden. "Large-area magnetic metamaterials via compact interference lithography." Optics Express 15, no. 2, 501-507 (2007). [DOI:10.1364/OE.15.000501] [PMID]
37. [37] Pakizeh, Tavakol, M. S. Abrishamian, N. Granpayeh, Alexandre Dmitriev, and Mikael Käll. "Magnetic-field enhancement in gold nanosandwiches." Optics Express 14, no. 18, 8240-8246 (2006). [DOI:10.1364/OE.14.008240] [PMID]
38. [38] Li, T., H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang. "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission." Optics Express 14, no. 23, 11155-11163 (2006). [DOI:10.1364/OE.14.011155] [PMID]
39. [39] Jeyaram, Yogesh, Shankar K. Jha, Mario Agio, Jörg F. Löffler, and Yasin Ekinci. "Magnetic metamaterials in the blue range using aluminum nanostructures." Optics letters 35, no. 10, 1656-1658 (2010). [DOI:10.1364/OL.35.001656] [PMID]
40. [40] Metwally, Khaled, Serge Mensah, and Guillaume Baffou. "Isosbestic thermoplasmonic nanostructures." ACS Photonics 4, no. 6, 1544-1551 (2017). [DOI:10.1021/acsphotonics.7b00329]
41. [41] Agranovich, Vladimir M., M. Litinskaia, and David G. Lidzey. "Cavity polaritons in microcavities containing disordered organic semiconductors." Physical Review B 67, no. 8, 085311 (2003). [DOI:10.1103/PhysRevB.67.085311]
42. [42] Peterson, Andrew F., Scott L. Ray, Raj Mittra, and Institute of Electrical and Electronics Engineers. Computational methods for electromagnetics. Vol. 351. New York: IEEE press, 1998. [DOI:10.1109/9780470544303]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.