1. 1[ Delaidelli, A. and A. Moiraghi, Recent advances in the diagnosis and treatment of brain tumors. Brain sciences, 14(3): p. 224, 2024. [
DOI:10.3390/brainsci14030224] [
PMID] [
]
2. [2] Mellinghoff, I.K. and R.J. Gilbertson, Brain Tumors: Challenges and Opportunities to Cure. J Clin Oncol, 35(21): p. 2343-2345, 2017. [
DOI:10.1200/JCO.2017.74.2965] [
PMID]
3. [3] Lara-Velazquez, M., et al., Advances in brain tumor surgery for glioblastoma in adults. Brain sciences, 7(12): p. 166, 2017. [
DOI:10.3390/brainsci7120166] [
PMID] [
]
4. [4] Tsugawa, T., et al., Gamma knife stereotactic radiosurgery for intracranial hemangiopericytoma. Journal of Radiosurgery and SBRT, 3(1): p. 29, 2014.
5. [5] Anvari, A., P. Sasanpour, and M.R. Kheradmardi, Radiotherapy and immunotherapy in melanoma brain metastases. Hematology/oncology and stem cell therapy, 2021.
6. [6] Higuchi, Y., et al., Modern management for brain metastasis patients using stereotactic radiosurgery: literature review and the authors' gamma knife treatment experiences. Cancer management and research,: p. 1889-1899 , 2018. [
DOI:10.2147/CMAR.S116718] [
PMID] [
]
7. [7] Kamal, S., Gamma Knife Radiosurgery-A Revolutionary Modality in the Treatment of Brain Tumors. National Journal of Health Sciences, 7(4): p. 142-143, 2022. [
DOI:10.21089/njhs.74.0142]
8. [8] Ashley Cothran, R., Hypofractionated radiation: Understanding the modality and impact on patient outcomes. Clinical Journal of Oncology Nursing, 26(1): p. 23-26, 2022.
9. [9] Zhan, D.-J., et al. Multi-group Particle Swarm Optimization with K-means Gap Filling for Finding Gamma Knife Treatment Plans. in 2023 13th International Conference on Information Science and Technology (ICIST). IEEE, 2023. [
DOI:10.1109/ICIST59754.2023.10367177]
10. [10] Xing, L., et al., Overview of image-guided radiation therapy. Medical Dosimetry, 31(2): p. 91-112, 2006. [
DOI:10.1016/j.meddos.2005.12.004] [
PMID]
11. [11] Podgorsak, E.B., et al., Radiosurgery with high energy photon beams: a comparison among techniques. International Journal of Radiation Oncology* Biology* Physics, 16(3): p. 857-865, 1989. [
DOI:10.1016/0360-3016(89)90506-3] [
PMID]
12. [12] Rice, R., et al., Measurements of dose distributions in small beams of 6 MV x-rays. Physics in Medicine & Biology, 32(9): p. 1087, 1987. [
DOI:10.1088/0031-9155/32/9/002] [
PMID]
13. [13] Stoica, F., R. Perin, and D. Neamtu, RISK FACTORS ASSOCIATED WITH STEREOTACTIC RADIOSURGERY FOR LARGE SKULL BASE BENIGN MENINGIOMAS. Romanian Neurosurgery, 38, 2024. [
DOI:10.33962/roneuro-2024-134]
14. [14] Zhu, D., et al., Study of a spherical phantom for Gamma knife dosimetry. Journal of Applied Clinical Medical Physics, 11(2): p. 222-229, 2010. [
DOI:10.1120/jacmp.v11i2.3130] [
PMID] [
]
15. [15] Nakazawa, H., et al., Effect of skull contours on dose calculations in Gamma Knife Perfexion stereotactic radiosurgery. Journal of Applied Clinical Medical Physics, 15(2): p. 28-38, 2014. [
DOI:10.1120/jacmp.v15i2.4603] [
PMID] [
]
16. [16] Khan, F.M. and J.P. Gibbons, Khan's the physics of radiation therapy. Lippincott Williams & Wilkins, 2014.
17. [17] Zhang, P., et al., Fast verification of Gamma Knife™ treatment plans. Journal of Applied Clinical Medical Physics, 1(4): p. 158-164, 2000. [
DOI:10.1120/jacmp.v1i4.2638] [
PMID] [
]
18. [18] Xu, A., et al., Dose differences between the three dose calculation algorithms in Leksell GammaPlan. Journal of Applied Clinical Medical Physics, 15(5): p. 89-99, 2014. [
DOI:10.1120/jacmp.v15i5.4844] [
PMID] [
]
19. [19] Zhang, A., et al., Comprehensive evaluation and clinical implementation of commercially available Monte Carlo dose calculation algorithm. Journal of Applied Clinical Medical Physics, 14(2): p. 127-145, 2013. [
DOI:10.1120/jacmp.v14i2.4062] [
PMID] [
]
20. [20] Chaikh, A., J.-Y. Giraud, and J. Balosso, A method to quantify and assess the dosimetric and clinical impact resulting from the heterogeneity correction in radiotherapy for lung cancer. International Journal of Cancer Therapy and Oncology, 2(1), 2014. [
DOI:10.14319/ijcto.0201.10]
21. [21] Fultz, S., et al., Photoneutron cross sections for V 51 and Co 59. Physical Review, 128(5): p. 2345, 1962. [
DOI:10.1103/PhysRev.128.2345]
22. [22] Sloboda, R.S., et al., A brief look at model-based dose calculation principles, practicalities, and promise. Journal of contemporary brachytherapy, 9(1): p. 79-88, 2017. [
DOI:10.5114/jcb.2017.65849] [
PMID] [
]
23. [23] Schreuder, A.N., et al., Validation of the RayStation Monte Carlo dose calculation algorithm using realistic animal tissue phantoms. Journal of Applied Clinical Medical Physics, 20(10): p. 160-171, 2019. [
DOI:10.1002/acm2.12733] [
PMID] [
]
24. [24] Ahnesjö, A., M. Saxner, and A. Trepp, A pencil beam model for photon dose calculation. Medical physics, 19(2): p. 263-273, 1992. [
DOI:10.1118/1.596856] [
PMID]
25. [25] Ahnesjö, A. and M.M. Aspradakis, Dose calculations for external photon beams in radiotherapy. Physics in Medicine & Biology, 44(11): p. R99, 1999. [
DOI:10.1088/0031-9155/44/11/201] [
PMID]
26. [26] Lu, W., et al., Accurate convolution/superposition for multi-resolution dose calculation using cumulative tabulated kernels. Physics in Medicine & Biology, 50(4): p. 655, 2005. [
DOI:10.1088/0031-9155/50/4/007] [
PMID]
27. [27] Elmtalab, S., et al., Determination of the neutron contamination during brain radiotherapy using a moderated-boron trifluoride detector and the Mcnp Monte Carlo code. Radiation protection dosimetry, 198(3): p. 129-138, 2022. [
DOI:10.1093/rpd/ncac001] [
PMID]
28. [28] Aziz, M.A., et al., -Beam Neutron Optimization for Boron Neutron Capture Therapy (BNCT) facility. Arab Journal of Nuclear Sciences and Applications, 57(4): p. 17-26, 2024. [
DOI:10.21608/ajnsa.2024.304087.1830]
29. [29] Shende, R., S. Dhoble, and G. Gupta, Dosimetric Evaluation of Radiation Treatment Planning for Simultaneous Integrated Boost Technique Using Monte Carlo Simulation. Journal of Medical Physics, 48(3): p. 298-306, 2023. [
DOI:10.4103/jmp.jmp_4_23] [
PMID] [
]
30. [30] Raghavi, S., et al., Evaluation of Dose Calculation Algorithms Accuracy for ISOgray Treatment Planning System in Motorized Wedged Treatment Fields. Journal of Medical Signals & Sensors, 14(10): p. 31, 2024. [
DOI:10.4103/jmss.jmss_28_24] [
PMID] [
]
31. [31] Chetty, I.J., et al., Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo‐based photon and electron external beam treatment planning. Medical physics, 34(12): p. 4818-4853, 2007. [
DOI:10.1118/1.2795842] [
PMID]
32. [32] Jia, X., et al., GPU-based fast Monte Carlo simulation for radiotherapy dose calculation. Physics in Medicine & Biology, 56(22): p. 7017, 2011. [
DOI:10.1088/0031-9155/56/22/002] [
PMID]
33. [33] Han, T., et al., Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model‐based convolution methods in heterogeneous media. Medical Physics, 38(5): p. 2651-2664, 2011. [
DOI:10.1118/1.3582690] [
PMID] [
]
34. [34] Junios, K.D., Treatment planning system pada kanker prostat dengan teknik brachyterapy. Jurnal Ipteks Terapan, 10(3): p. 155-160, 2016. [
DOI:10.22216/jit.2016.v10i3.587]
35. [35] Trnka, J., J. Novotny Jr, and J. Kluson, MCNP‐based computational model for the Leksell Gamma Knife. Medical physics, 34(1): p. 63-75, 2007. [
DOI:10.1118/1.2401054] [
PMID]
36. [36] Al-Dweri, F.M., A.M. Lallena, and M. Vilches, A simplified model of the source channel of the Leksell GammaKnife® tested with PENELOPE. Physics in Medicine & Biology, 49(12): p. 2687, 2004. [
DOI:10.1088/0031-9155/49/12/015] [
PMID]
37. [37] Xiong, W., et al. Implementation of Monte Carlo simulations for the Gamma Knife system. in Journal of Physics: Conference Series. IOP Publishing, 2007. [
DOI:10.1088/1742-6596/74/1/021023]
38. [38] Reinhardt, S., et al., Comparison of Gafchromic EBT2 and EBT3 films for clinical photon and proton beams. Medical physics, 39(8): p. 5257-5262, 2012. [
DOI:10.1118/1.4737890] [
PMID]
39. [39] Costa, F., S. Sarmento, and O. Sousa, Assessment of clinically relevant dose distributions in pelvic IOERT using Gafchromic EBT3 films. Physica Medica, 31(7): p. 692-701, 2015. [
DOI:10.1016/j.ejmp.2015.05.013] [
PMID]