1. [1] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, "Na-ion batteries, recent advances and present challenges to become low cost energy storage systems", Energy Environ. Sci., vol. 5, pp. 5884-5901, 2012. [
DOI:10.1039/c2ee02781j]
2. [2] F. Wu, J. Qian, R. Chen, J. Lu, L. Li, H. Wu, J. Chen, T. Zhao, Y. Ye, K. Amine, "An effective approach to protect lithium anode and improve cycle performance for Li-S batteries", ACS Appl. Mater. Interfaces, vol. 6, pp. 15542-15549, 2014. [
DOI:10.1021/am504345s] [
PMID]
3. [3] A. Vizintin, M. U. M. Patel, B. Genorio, R. Dominko, "Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries", ChemElectroChem, vol. 1, pp. 1040-1045, 2014. [
DOI:10.1002/celc.201402039]
4. [4] K. Liu, Y. Lin, J. D. Miller, J. Liu, X. Wang, "Study of sucrose based room temperature solid polymer electrolyte for lithium sulfur battery", J. Electrochem. Soc., vol. 164, pp. A447-A452, 2017. [
DOI:10.1149/2.1281702jes]
5. [5] H. Jiajun, L. Xiaodong Li, "Recent materials development for Li-ion and Li-S battery separators", Journal of Energy Storage, vol. 112, pp. 115541, 2025. [
DOI:10.1016/j.est.2025.115541]
6. [6] J. Luo, R.-C. Lee, J.-T. Jin, Y.-T. Weng, C.-C. Fang, N.-L. Wu, "A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries", Chem. Commun., vol. 53, pp. 963-966, 2017. [
DOI:10.1039/C6CC09248A] [
PMID]
7. [7] Z. She, Y. Sun, Q. Zhang, Y. Cui, "Designing high-energy lithium-sulfur batteries", Chem. Soc. Rev., vol. 45, PP. 5605-5634, 2016. [
DOI:10.1039/C5CS00410A] [
PMID]
8. [8] R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, "Anodes for rechargeable lithium‐sulfur batteries", Adv. Energy Mater., vol. 5, pp. 1402273, 2015. [
DOI:10.1002/aenm.201402273]
9. [9] A. Vizintin, M. Patel, B. Genorio, R. Dominko, "Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries", ChemElectroChem, vol. 1, pp. 1040-1045, 2014. [
DOI:10.1002/celc.201402039]
10. [10] K. Liu, Y. Lin, J.D. Miller, J. Liu, X. Wang, "Study of sucrose based room temperature solid polymer electrolyte for lithium sulfur battery", J. Electrochem. Soc., vol. 164, PP. A447-A452, 2017. [
DOI:10.1149/2.1281702jes]
11. [11] J. Luo, R. Lee, J. Jin, Y. Weng, C. Fang, N. Wu, "A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries", Chem. Commun., vol. 53, pp. 963-966, 2017. [
DOI:10.1039/C6CC09248A] [
PMID]
12. [12] Z. Deming, et.al., "Vertically Integrated Supply Chain of Batteries, Electric Vehicles, and Charging Infrastructure: A Review of Three Milestone Projects from Theory of Constraints Perspective ", Journal of Energy Chemistry, vol. 57, pp. 41-60, 2021.
13. [13] R. Cao, W. Xu, D. Lv, J. Xiao, and J. Zhang, "Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium-sulfur batteries by nitrogen doping", Adv. Energy Mater. vol. 5, pp. 1402273-1402295, 2015.
14. [14] K.A. See, H. Wu, K. Lau, M. Shin, L. Cheng, M. Balasubramanian, K. Gallagher, L. Curtiss, A. Gewirth, "Effect of hydrofluoroether cosolvent addition on Li solvation in acetonitrile-based solvate electrolytes and its influence on S reduction in a Li-S battery", ACS Appl. Mater. Interfaces., vol. 8, pp. 34360-34371, 2016. [
DOI:10.1021/acsami.6b11358] [
PMID]
15. [15]. K. Ssendagire, K. Jungmin, K. Jeongtae, P. Isheunesu, "Water-based dual polymer ceramic-coated composite separator for high-energy-density lithium secondary batteries", Journal of Industrial and Engineering Chemistry, vol. 130, pp. 638-647, 2024. [
DOI:10.1016/j.jiec.2023.10.017]
16. [16]. Y. Shanshan, et.al., "Comparative study of the electrochemical performances of different polyolefin separators in lithium/sulfur batteries", Materials Research Bulletin, vol. 171, pp. 112604, 2024. [
DOI:10.1016/j.materresbull.2023.112604]
17. [17]. W. Haihua, H. Yun, L. Xuan, S. Liyu, N. Huizhu, D. Yifan, W. Jie, "Hierarchical self‐assembly of tannic acid/diethylenetriamine on polypropylene for high‐performance separator", journal of applied polymer science, vol. 141, pp. 15, 2024. [
DOI:10.1002/app.55222]
18. [18] Z. Zhang, Q. Li, K. Zhang, W. Chen, Y. Lai, J. Li, "Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium-sulfur batteries", J. Power Sources., vol. 290, pp. 159-167, 2015. [
DOI:10.1016/j.jpowsour.2015.05.010]
19. [19] G. Zhou, D. Wang, F. Li, P. Hou, L. Yin, C. Liu, G. Lu, I. Gentle, H. Cheng, "A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries", Energy Environ. Sci., vol. 5, pp. 8901-8906, 2012. [
DOI:10.1039/c2ee22294a]
20. [20] L. Zeng, F. Pan, W. Li, Y. Jiang, X. Zhong, Y. Yu, "Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode", Nanoscale, vol. 6, pp. 9579-9587, 2014. [
DOI:10.1039/C4NR02498B] [
PMID]
21. [21] L. Zeng, W. Zeng, Y. Jiang, X. Wei, W. Li, C. Yang, Y. Zhu, Y. Yu, "Membranes of MnO beading in carbon nanofibers as flexible anodes for high-performance lithium-ion batteries", Adv. Energy Mater., vol. 5, pp. 1401377-1401386, 2015. [
DOI:10.1038/srep14146] [
PMID] [
]
22. [22] S. Thieme, J. Brueckner, I. Bauer, M. Oschatz, L. Borchardt, H. Althues, S. Kaskel, "High capacity micro-mesoporous carbon-sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure", J. Mater. Chem. A, 2013, vol. 1, pp. 9225-9234, 2013. [
DOI:10.1039/c3ta10641a]
23. [23] Q. Sun, X. Fang, W. Weng, J. Deng, P. Chen, J. Ren, G. Guan, M. Wang, H. Peng, "An aligned and laminated nanostructured carbon hybrid cathode for high‐performance lithium-sulfur batteries", Angew. Chem. Int. Ed., vol. 54, pp. 10539-10544, 2015. [
DOI:10.1002/anie.201504514] [
PMID]
24. [24] K. Lee, R. Black, T. Yim, X. Ji, L. Nazar, "Surface‐initiated growth of thin oxide coatings for Li-sulfur battery cathodes", Adv. Energy. Mater. vol. 2, pp. 1490-1496, 2012. [
DOI:10.1002/aenm.201200006]
25. [25] D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, W. Li, "High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery", ACS Appl. Mater. Interfaces, vol. 5, pp. 2208-2213, 2013. [
DOI:10.1021/am4000535] [
PMID]
26. [26] Y. Chen, S. Lu, X. Wu, J. Liu, "Flexible carbon nanotube-graphene/sulfur composite film: free-standing cathode for high-performance lithium/sulfur batteries", J. Phys. Chem. C, vol. 119, pp. 10288-10294, 2015. [
DOI:10.1021/acs.jpcc.5b02596]
27. [27] C. Wang, K. Su, W. Wan, H. Guo, H. Zhou, J. Chen, X. Zhang, Y. Huang, "High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries", J. Mater. Chem. A, vol. 2, pp. 5018-5023, 2014. [
DOI:10.1039/C3TA14921H]
28. [28] H. Wang, W. Zhang, H. Liu, Z. Guo, "A strategy for configuration of an integrated flexible sulfur cathode for high‐performance lithium-sulfur batteries", Angew. Chem. Int. Ed. vol. 55, pp. 3992-3996, 2016. [
DOI:10.1002/anie.201511673] [
PMID]
29. [29] L. Sun, W. Kong, Y. Jiang, H. Wu, K. Jiang, J. Wang, S. Fan, "Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries", J. Mater. Chem. A, vol. 3, pp. 5305-5312, 2015. [
DOI:10.1039/C4TA06255H]
30. [30] C. Wang, X. Wang, Y. Wang, J. Chen, H. Zhou, Y. Huang, "Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery", Nano Energy, vol. 11, pp. 678-686, 2015. [
DOI:10.1016/j.nanoen.2014.11.060]
31. [31] X. Song, S Wang, Y. Bao, G. Liu, W. Sun, L. Ding, H. Liu, H. Wang, "A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium-sulfur batteries", J. Mater. Chem. A, vol. 5, pp. 6832-6839, 2017. [
DOI:10.1039/C7TA01171G]
32. [32] Y. Guo, G. Zhao, N. Wu, Y. Zhang, M. Xiang, B. Wang, H. Liu, H. Wu, "Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li-S batteries", ACS Appl. Mater. Interfaces, vol. 8, pp. 34185-34193, 2016. [
DOI:10.1021/acsami.6b13455] [
PMID]
33. [33] C. Lin, C.J. Niu, X. Xu, K. Li, Z.Y. Cai, Y.L. Zhang, X.P. Wang, L.B. Qu, Y.X. Xu, "A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li-S cathodes" Phys. Chem. Chem. Phys., vol. 18, pp. 22146-22153, 2016. [
DOI:10.1039/C6CP03624D] [
PMID]
34. [34] Z.A. Ghazi, X. He, A.M. Khattak, NA Khan B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li, Z. Tang, "Design and synthesis of novel sandwich-type C@ TiO 2@ C hollow microspheres as efficient sulfur hosts for advanced lithium-sulfur batteries", Adv. Mater., vol. 29, pp. 1606817-1606822, 2017. [
DOI:10.1002/adma.201606817] [
PMID]
35. [35] Y.B. An, Q.Z. Zhu, L.F. Hu, S.K. Yu, Q. Zhao, B. Xu, "A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium-sulfur batteries", J. Mater. Chem. A, vol. 4, pp. 15605-15611, 2016. [
DOI:10.1039/C6TA06088A]
36. [36] J. Song, Z. Yu, T. Xu, S. Chen, H. Sohn, M. Regula, D. Wang, "Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithium-sulfur batteries", J. Mater. Chem. A, vol. 2, pp. 8623-8627, 2014. [
DOI:10.1039/C4TA00742E]
37. [37] C. Milroy, and A Manthiram, "An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium-Sulfur Batteries.", Adv. Mater., vol. 28, pp. 9744-9751, 2016. [
DOI:10.1002/adma.201601665] [
PMID]
38. [38] A. Ghosh, R. Manjunatha, R. Kumar, S. Mitra, "A facile bottom-up approach to construct hybrid flexible cathode scaffold for high-performance lithium-sulfur batteries", ACS Appl. Mater. Interfaces, vol. 8, pp. 33775-33785, 2016. [
DOI:10.1021/acsami.6b11180] [
PMID]
39. [39] C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen, Y. Huang, J. Li, "Slurryless Li2S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery", Nano Lett., vol. 15, pp. 1796-1802, 2015. [
DOI:10.1021/acs.nanolett.5b00112] [
PMID]
40. [40] J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, W. Qin, W. He, "From Metal-Organic Framework to Li2S@C-Co-N Nanoporous Architecture: A High-Capacity Cathode for Lithium-Sulfur Batteries", ACS Energy Lett., vol. 1, pp. 820-826, 2016. [
DOI:10.1021/acsnano.6b05696] [
PMID]
41. [41] J. He, Y. Chen, W. Lv, K. Wen, Z. Wang, W. Zhang, Y. Li, W. Qin, W. He, "Employing ZIF-67 architectures into 2D CoTe-based hybrid composites for exceptionally stable supercapacitor electrode with improved capacitive performance", ASC Nano, vol. 10, pp. 8837-8842, 2016.
42. [42] Y. Huang, M. Zheng, Z. Lin, B. Zhao, S. Zhang, J. Yang, C. Zhu, H. Zhang, D. Sun, Y. Shi, "Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium-sulfur batteries", J. Mater. Chem. A, vol. 3, pp. 10910-10918, 2015. [
DOI:10.1039/C5TA01515D]
43. [43] M. Armand, and J. Tarascon, "Building better batteries". Nature, no. 451, pp. 652-657, 2008. [
DOI:10.1038/451652a] [
PMID]
44. [44] S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, L. Qi, "Self-supported Li 4 Ti 5 O 12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life", Energy Environ. Sci., vol. 7, pp. 1924-1930, 2014. [
DOI:10.1039/c3ee42646g]
45. [45] R. Khurana, J. Schaefer, L. Archer, G. Coates, "Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries", J. Am. Chem. Soc., vol. 136, pp. 7395-7402, 2014. [
DOI:10.1021/ja502133j] [
PMID]
46. [46] S. Ramesh, and M. Chai, "Conductivity, dielectric behavior and FTIR studies of high molecular weight poly (vinylchloride)-lithium triflate polymer electrolytes", Mater. Sci. Eng., vol. 139, pp. 240-245, 2007. [
DOI:10.1016/j.mseb.2007.03.003]
47. [47] S. Ramesh, T. Winie, A. Arof, "Investigation of mechanical properties of polyvinyl chloride-polyethylene oxide (PVC-PEO) based polymer electrolytes for lithium polymer cells", Eur. Polym. J., vol. 43, pp. 1963-1968, 2007. [
DOI:10.1016/j.eurpolymj.2007.02.006]
48. [48] J. Tarascon, and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Issues and challenges facing rechargeable lithium batteries. Nature, vol. 414, pp. 359-367, 2001. [
DOI:10.1038/35104644] [
PMID]
49. [49] Y. Zhang, Y. Zhao, Z. Bakenov, "A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte", Nanoscale Res. Lett., vol. 9, pp. 137-143, 2014. [
DOI:10.1186/1556-276X-9-137] [
PMID] [
]
50. [50] Y. Zhao, Y. Zhang, Z. Bakenov, P. Chen, "Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode", Solid State Ionics, vol. 234, pp. 40-45, 2013. [
DOI:10.1016/j.ssi.2013.01.002]
51. [51] M. Liu, D. Zhou, Y. He, Y. Fu, X. Qin, C. Miao, H. Du, B. Li, Q. Yang, Z. Lin, "Novel gel polymer electrolyte for high-performance lithium-sulfur batteries", Nano Energy, vol. 22, pp. 278-289, 2016. [
DOI:10.1016/j.nanoen.2016.02.008]
52. [52] C. Barchasz, F. Molton, C. Duboc, J. C. Lepretre, S. Patoux, F. Alloin, "Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification", Anal. Chem., vol. 84, pp. 3973-3980, 2012. [
DOI:10.1021/ac2032244] [
PMID]
53. [53] J. Gao, M. Lowe, Y. Kiya, H. Abruna, "Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic", J. Phys. Chem. C, vol. 115, pp. 25132-25137, 2011. [
DOI:10.1021/jp207714c]
54. [54] J. Xu, J. Li, Y. Zhu, K. Zhu, Y. Liu, J. Liu, "A triPEG-boron based electrolyte membrane for wide temperature lithium ion batteries", RSC Adv., vol. 6, pp. 20343-20348, 2016. [
DOI:10.1039/C6RA02865A]
55. [55] F. Croce, G. Appetecchi, L. Persi, B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries", Nature, vol. 394, pp. 456-458, 1998. [
DOI:10.1038/28818]
56. [56] Y. Aihara, G. Appetecchi, B. Scrosati, "A new concept for the formation of homogeneous, poly (ethylene oxide) based, gel-type polymer electrolyte", J. Electrochem. Soc., vol. 149, pp. A849-A854, 2002. [
DOI:10.1149/1.1481524]
57. [57] S. Zhang, "A concept for making poly (ethylene oxide) based composite gel polymer electrolyte lithium/sulfur battery", J. Electrochem. Soc., vol. 160, pp. A1421-A1424, 2013. [
DOI:10.1149/2.058309jes]
58. [58] Y. Lin, X. Wang, J. Liu, J. Miller, "Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries", Nano Energy, vol. 31, pp. 478-485, 2017. [
DOI:10.1016/j.nanoen.2016.11.045]
59. [59] S. Choudhury, R. Mangal, A. Agrawal, L. Archer, "Holey graphene oxide as filler to improve electrochemical performance of solid polymer electrolytes", Nat. Commun., vol. 6, pp. 10101-10109, 2015.
60. [60] M.B. Berman, and S. Greenbaum, "NMR studies of solvent-free ceramic composite polymer electrolytes-A brief review", Membranes, vol. 5, pp. 915-923, 2015. [
DOI:10.3390/membranes5040915] [
PMID] [
]
61. [61] X. Ji, S. Evers, R. Black, L. Nazar, "A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries", Nat. Commun., vol. 2, pp. 1-7, 2011.
62. [62] Y. Zhao, Y. Zhang, D. Gosselink, T. Doan, M. Sadhu, H. J. Cheang, P. Chen, "Polymer electrolytes for lithium/sulfur batteries", Membranes, vol. 2, pp. 553-564, 2012. [
DOI:10.3390/membranes2030553] [
PMID] [
]
63. [63] S. Choudhury, T. Saha, K. Naskar, M. Stamm, G. Heinrich, A. Das, "A highly stretchable gel-polymer electrolyte for lithium-sulfur batteries", Polymer, vol. 112, pp. 447-456, 2017. [
DOI:10.1016/j.polymer.2017.02.021]
64. [64] B. Kurc, and T. Jesionowski, "Modified TiO2-SiO2 ceramic filler for a composite gel polymer electrolytes working with LiMn2O4", J. Solid State Electrochem., vol. 19, pp. 1427-1435, 2015. [
DOI:10.1007/s10008-015-2762-6]
65. [65]. T Yu, Y Liu, H Li, Y Sun, S Guo, H Zhou, "Ductile inorganic solid electrolytes for all-solid-state lithium batteries", Chemical Reviews, vol. 6, pp. 3595-3662, 2025. [
DOI:10.1021/acs.chemrev.4c00894] [
PMID]
66. [66]. T Fang, et. al., "A Review of the Application of Metal-Based Heterostructures in Lithium-Sulfur Batteries", vol. 15, pp. 106-111, 2025. [
DOI:10.3390/catal15020106]
67. [67]. Y. Bai, et.al., "Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li-S battery", Chemical Engineering Journal, 2020, vol. 396, pp. 125334, 2020. [
DOI:10.1016/j.cej.2020.125334]
68. [68] S. Park, Y. Lee, D. Kim, "High-performance lithium-ion polymer cells assembled with composite polymer electrolytes based on core-shell structured SiO2 particles containing poly", J. Electrochem. Soc., vol. 162, pp. A3071-A3076, 2015. [
DOI:10.1149/2.0081502jes]
69. [69] S. Ju, Y. Lee, Y. Sun, D. Kim, "Unique core-shell structured SiO 2 (Li+) nanoparticles for high-performance composite polymer electrolytes", J. Mater. Chem. A, vol. 1, pp. 395-401, 2013. [
DOI:10.1039/C2TA00556E]
70. [70] L. Jin, H. Wu, M. Morbidelli, "Synthesis of Water-Based Dispersions of Polymer/TiO2 Hybrid Nanospheres", Nanomaterials, vol. 5, pp. 1454-1468, 2015. [
DOI:10.3390/nano5031454] [
PMID] [
]
71. [71] M. Chaimberg, and Y. Cohen, "Note on the silylation of inorganic oxide supports", J. Colloid Interface Sci., vol. 134, pp. 576-579, 1990. [
DOI:10.1016/0021-9797(90)90164-J]
72. [72] M. Iijima, M. Kobayakawa, H. Kamiya, "Tuning the stability of TiO2 nanoparticles in various solvents by mixed silane alkoxides", J. Colloid Interface Sci., vol. 337, pp. 61-65, 2009. [
DOI:10.1016/j.jcis.2009.05.007] [
PMID]
73. [73] M. Patel, R. Demir-Cakan, M. Morcrette, J. Tarascon, M. Gaberscek, R. Dominko, "Li-S battery analyzed by UV/Vis in operando mode", ChemSusChem, vol. 6, pp. 1177-1181, 2013. [
DOI:10.1002/cssc.201300142] [
PMID]
74. [74] N. Deng, W. Kang, Y. Liu, J. Ju, D. Wu, L. Li, B. Hassan, B. Cheng, "A review on separators for lithiumsulfur battery: progress and prospects", J. Power Sources, vol. 331, pp. 132-155, 2016. [
DOI:10.1016/j.jpowsour.2016.09.044]
75. [75] L. Yang, G. Li, X. Jiang, T. Zhang, H. Lin, J. Lee, "Crystallography, packing mode, and aggregation state of chlorinated isomers for efficient organic solar cells", J. Mater. Chem. A, vol. 5, pp. 2506-12512, 2017.
76. [76] X. Zhou, Q. Liao, T. Bai, J. Yang, "Nitrogen-doped microporous carbon from polyaspartic acid bonding separator for high performance lithium-sulfur batteries", J. Electroanal. Chem., vol. 791, pp. 167-174, 2017. [
DOI:10.1016/j.jelechem.2017.03.004]
77. [77] P. Zuo, J. Hua, M. He, H. Zhang, Z. Qian, Y. Ma, C. Du, X. Cheng, Y. Gao, G. Yin, "Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium-sulfur batteries", J. Mater. Chem. A, vol. 5, pp. 10936-10945, 2017. [
DOI:10.1039/C7TA02245J]
78. [78] Y. Lu, S. Gu, J. Guo, K. Rui, C. Chen, S. Zhang, J. Jin, J. Yang, Z. Wen, "Sulfonic groups originated dual-functional interlayer for high performance lithium-sulfur battery", ACS Appl. Mater. Interfaces, vol. 9, pp. 14878-14888, 2017. [
DOI:10.1021/acsami.7b02142] [
PMID]
79. [79] C. Oh, N. Yoon, J. Choi, Y. Choi, S. Ahn, J. Lee, "Enhanced Li-S battery performance based on solution-impregnation-assisted sulfur mesoporous carbon cathodes and a carbon-coated separator", J. Mater. Chem. A, vol. 5, pp. 5750-5760, 2017. [
DOI:10.1039/C7TA01161J]
80. [80] G. Zhou, L. Li, D. Wang, X. Shan, S. Pei, F. Li, H. Cheng, "TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries", Adv. Mater. vol. 27, pp. 641-647, 2015. [
DOI:10.1002/adma.201404210] [
PMID]
81. [81] Y. Jiang, F. Chen, Y. Gao, Y. Wang, S. Wang, Q. Gao, Z. Jiao, B. Zhao, Z. Chen, "Inhibiting the shuttle effect of Li-S battery with a graphene oxide coating separator: Performance improvement and mechanism study", J. Power Sources, vol. 342, pp. 929-938, 2017. [
DOI:10.1016/j.jpowsour.2017.01.013]
82. [82] S. Abbas, M. Ibrahem, L. Hu, C. Lin, J. Fang, K. Boopathi, P. Wang, L. Li, C. Chu, "Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries", J. Mater. Chem. A, 2016, vol. 4, pp. 9661-9669, 2016. [
DOI:10.1039/C6TA02272C]
83. [83] Y. Cui, and Y. Fu, "Polysulfide transport through separators measured by a linear voltage sweep method", J. Power Sources, vol. 286, pp. 557-560, 2015. [
DOI:10.1016/j.jpowsour.2015.04.033]
84. [84]. Y. Xiaoping, Q. Guoqing, L. Xunliang, D. Christopher, "Enhanced hydrophobic interaction between fish (Cyprinus carpio L.) scale gelatin and curcumin: Mechanism study", Journal of Energy Storage, vol. 121, pp. 112480, 2024.
85. [85]. Z. Li, J. Yang, M. Chhowalla, "Stabilising graphite anode with quasi-solid-state electrolyte for long-life lithium-sulfur batteries", MRS Energy & Sustainability, 2025.
86. [86] L. Kong, X. Chen, B.Q. Li, H.J. Peng, J.Q. Huang, J. Xie, Q. Zhang, "A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries", Adv. Mate. vol. 30, pp. 1705219, 2018. [
DOI:10.1002/adma.201705219] [
PMID]
87. [87] Y. Chen, S.H. Choi, D.W. Su, X.C. Gao, G.X. Wang, "Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries", Nano Energy, vol. 47, pp. 331, 2018. [
DOI:10.1016/j.nanoen.2018.03.008]
88. [88] M. Li, Y.N. Zhang, X.L. Wang, W. Ahn, G.P. Jiang, K. Feng, G. Lui, Z.W. Chen, "Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries", Adv. Funct. Mater. vol. 26, pp. 8408, 2016. [
DOI:10.1002/adfm.201603241]
89. [89] X.W. Wang, T. Gao, F.D. Han, Z.H. Ma, Z. Zhang, J. Li, C.S. Wang, "Stabilizing high sulfur loading Li-S batteries by chemisorption of polysulfide on three-dimensional current collector", Nano Energy, vol. 30, pp. 700, 2016. [
DOI:10.1016/j.nanoen.2016.10.049]
90. [90] H. Pan, Z.B. Cheng, Z.B. Xiao, X.J. Li, R.H. Wang, "The fusion of imidazolium‐based ionic polymer and carbon nanotubes: one type of new heteroatom‐doped carbon precursors for high‐performance lithium-sulfur", Adv. Funct. Mater. vol. 27, pp. 1703936, 2017. [
DOI:10.1002/adfm.201703936]
91. [91] Z.C. Xiao, D.B. Kong, Q. Song, S.K. Zhou, Y.B. Zhang, A. Badshah, J.X. Liang, L.J. Zhi, "A facile Schiff base chemical approach: towards molecular-scale engineering of NC interface for high performance lithium-sulfur batteries", Nano Energy, vol. 46, pp. 365, 2018. [
DOI:10.1016/j.nanoen.2018.02.016]
92. [92] L.C. Yin, J. Liang, G.M. Zhou, F. Li, R. Saito, H.M. Cheng, "Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations", Nano Energy, vol. 25, pp. 203, 2016. [
DOI:10.1016/j.nanoen.2016.04.053]
93. [93] M.W. Xiang, H. Wu, H. Liu, J. Huang, Y.F. Zheng, L. Yang, P. Jing, Y. Zhang, S.X. Dou, H.K. Liu, "A flexible 3D multifunctional MgO‐decorated carbon foam@ CNTs hybrid as self‐supported cathode for high‐performance lithium‐sulfur batteries", Adv. Funct. Mater., vol. 27, pp. 1702573, 2017. [
DOI:10.1002/adfm.201702573]
94. [94] E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, "2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries", Nat. Nanotechnol., vol. 13, pp. 337, 2018. [
DOI:10.1038/s41565-018-0061-y] [
PMID]
95. [95] X.Q. Zhang, B. He, W.C. Li, A.H. Lu, "Characterization of Sulfur/Graphitized Mesocarbon Microbeads Composite Cathodes for Li-S Batteries", Nano Res. vol. 11, pp. 1238, 2018.
96. [96] G.X. Li, Q.Q. Huang, X. He, Y. Gao, D.W. Wang, S.H. Kim, D.H. Wang, "Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries", ACS Nano, vol. 12, pp. 1500, 2018. [
DOI:10.1021/acsnano.7b08035] [
PMID]
97. [97] G. Li, X.L. Wang, M.H. Seo, M. Li, L. Ma, Y.F. Yuan, T.P. Wu, A.P. Yu, S. Wang, J. Lu, Z.W. Chen, "Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries", Nat. Commun., vol. 9, pp. 705, 2018. [
DOI:10.1038/s41467-018-03116-z] [
PMID] [
]
98. [98] H.W. Du, X.C. Gui, R.L. Yang, Z.Q. Lin, B.H. Liang, W.J. Chen, Y.J. Zheng, H. Zhu, "In situ sulfur loading in graphene-like nano-cell by template-free method for Li-S batteries", J. Chen, Nanoscale, vol. 10, pp. 3877, 2018. [
DOI:10.1039/C7NR07500F] [
PMID]
99. [99] J.Y. Wang, J.W. Wan, N.L. Yang, Q. Li, D. Wang, "Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour", Nat. Rev. Chem., vol. 4, pp. 159, 2020. [
DOI:10.1038/s41570-020-0161-8] [
PMID]
100. [100] C. Wang, J.Y. Wang, W.P. Hu, D. Wang, "Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors", Chem. Res. Chinese U. vol. 36, pp. 68, 2020. [
DOI:10.1007/s40242-019-0040-3]
101. [101] X. Huang, J.Y. Tang, B. Luo, R. Knibbe, T. Lin, H. Hu, M. Rana, Y. Hu, X. Zhu, Q. Gu, D. Wang, L. Wang, "Sandwich‐Like Ultrathin TiS2 Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithium‐Sulfur Batteries", Adv. Energy Mater., vol. 9, pp. 1901872, 2019. [
DOI:10.1002/aenm.201901872]
102. [102] J. Wang, J. Wan, D. Wang, "Hollow multishelled structures for promising applications: understanding the structure-performance correlation", Acc. Chem. Res., vol. 52, pp. 2169, 2016. [
DOI:10.1021/acs.accounts.9b00112] [
PMID]
103. [103] E. Salhabi, J. Zhao, J. Wang, M. Yang, B. Wang, D. Wang, "Hollow Multi‐Shelled Structural TiO2−x with Multiple Spatial Confinement for Long‐Life Lithium-Sulfur Batteries", Angew. Chem. Int. Ed., vol. 58, pp. 9078, 2019. [
DOI:10.1002/anie.201903295] [
PMID]
104. [104] D. Mao, J. Wan, J. Wang, D. Wang, "Sequential templating approach: a groundbreaking strategy to create hollow multishelled structures", Adv. Mater., vol. 31, pp. 1802874, 2018. [
DOI:10.1002/adma.201802874] [
PMID]
105. [105] J. Wang, Y. Cui, D. Wang, "Design of hollow nanostructures for energy storage, conversion and production", Adv. Mater., vol. 31, pp. 1801993, 2018. [
DOI:10.1002/adma.201801993] [
PMID]
106. [106] Y. Liu, G. Li, Z. Chen, X. Peng, "A binder-free electrode architecture design for lithium-sulfur batteries: a review", Nanoscale, vol. 5, pp. 9775, 2017.
107. [107] L. Zhu, H.J. Peng, J. Liang, J.Q. Huang, C.-M. Chen, X. Guo, W. Zhu, P. Li, Q. Zhang, "Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries", Nano Energy, vol. 11, pp. 746, 2015. [
DOI:10.1016/j.nanoen.2014.11.062]
108. [108] S.Z. Huang, L.L. Zhang, J.Y. Wang, J.L. Zhu, P.K. Shen, "High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery", Nano Res., vol. 11, pp. 1731, 2018.
109. [109] Y. Yang, X. Song, X.J. Li, Z.Y. Chen, C. Zhou, Q.F. Zhou, Y. Chen, "Recent progress in biomimetic additive manufacturing technology: from materials to functional structures", Adv. Mater., vol. 30, pp. 1706539, 2018. [
DOI:10.1002/adma.201706539] [
PMID]
110. [110] W.L. Wu, J. Pu, J. Wang, Z.H. Shen, H.Y. Tang, Z.T. Deng, X.Y. Tao, F. Pan, H.G. Zhang, "Efficient Ni2Co4P3 Nanowires Catalysts Enhance Ultrahigh‐Loading Lithium-Sulfur Conversion in a Microreactor‐Like Battery", Adv. Energy Mater., vol. 21, pp. 1702373, 2018.
111. [111] G. Ai, Y.L. Dai, W.F. Mao, H. Zhao, Y.B. Fu, X.Y. Song, Y.F. En, V. Battaglia, V. Srinivasan, G. Liu, "Biomimetic ant-nest electrode structures for high sulfur ratio lithium-sulfur batteries", Nano Letters, vol. 16, pp. 5365, 2016. [
DOI:10.1021/acs.nanolett.6b01434] [
PMID]
112. [112] X.Y. Tao, JT. Zhang, Y. Xia, H. Huang, J. Du, H. Xiao, W.K. Zhang, Y.P. Gan, "A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis", J. Mater. Chem. A, vol. 2, pp. 2283, 2014.
113. [113] D. Su, M. Cortie, G. Wang, "Fabrication of N‐doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries", Adv. Energy Mater., vol. 7, pp. 1602014, 2017. [
DOI:10.1002/aenm.201602014]
114. [114] J.L. Wang, Z. Meng, W.T. Yang, "Advances and prospects of gC3N4 in lithium-sulfur batteries", ACS Appl. Mater. Inter., vol. 11, pp. 819, 2019. [
DOI:10.1021/acsami.8b17590] [
PMID]
115. [115] H.L. Wu, Y. Li, R. Ren, D.W. Rao, Q.J. Zheng, L. Zhou, D.M. Lin, "CNT-assembled dodecahedra core@ nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries", Nano Energy, vol. 55, pp. 82, 2019. [
DOI:10.1016/j.nanoen.2018.10.061]