logo
Volume 9, Issue 2 (Autumn and Winter 2024 2025)                   JMRPh 2025, 9(2): 49-60 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kiamehr Z, Shafiee M, Shokri B. Comprehensive understanding of Li-S battery technology and development of nanomaterials for high-performance energy storage technology. JMRPh 2025; 9 (2) :49-60
URL: http://jmrph.khu.ac.ir/article-1-258-en.html
Tafresh University
Abstract:   (90 Views)
Entering the 21st century, with the ongoing energy crisis and the intensification of environmental pollution and energy storage technologies, renewable energy has attracted the attention of the whole human society. Compared with other energy storage systems, lithium-sulfur (Li-S) batteries are considered as one of the most promising systems for next-generation rechargeable batteries due to their high energy density and low cost. However, both cathode and anode materials face serious shortcomings in practical applications. For cathode materials, the shuttle effect and the loss of cathode active materials due to volume expansion during cycling are often considered as the main reasons for the energy reduction of lithium-sulfur batteries. For anode materials, the failure to inhibit the growth of lithium dendrites often leads to internal short circuits in the battery, which leads to serious thermal runaway of the battery. At the same time, the rapid development of nanotechnology has brought technological breakthroughs in various scientific fields. In this study, some of the latest nanotechnologies that have been systematically applied to improve the electrochemical performance of lithium-sulfur batteries are outlined. In addition, we rationally outlined strategies to reduce the negative effects of shuttle effects and suppress the growth of lithium dendrites. The use of nanotechnology can effectively increase the discharge capacity, improve the cycle stability, and enhance the safety of high-energy-density lithium-sulfur batteries. This research may provide insights into the development of nanotechnology for large-scale energy storage.
     
Type of Study: case report | Subject: Special
Received: 2025/03/13 | Accepted: 2025/08/21 | Published: 2025/03/15 | ePublished: 2025/03/15

References
1. [1] A. Ahmad, N. C. Lah, S. Ismail, B. Ooi, "Membrane Antifouling Methods and Alternatives: Ultrasound Approach", Separation and Purification Reviews, vol. 41, no. 318, 2012. [DOI:10.1080/15422119.2011.617804]
2. [2] B. Farokhi, M. Rezaei, Z. Kiamehr and S. Hosseini, "A new approach to provide high water permeable polyethersulfone based nanofiltration membrane by air plasma treatment", International Journal of Engineering, vol. 32, no. 354, 2019. [DOI:10.5829/ije.2019.32.03c.01]
3. [3] Z. Kiamehr, B. Farokhi, S. Hosseini, "Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with Air-Ar plasma", Korean Journal of Chemical Engineering, vol. 38, no. 114, 2021. [DOI:10.1007/s11814-020-0665-4]
4. [4] A. Esfahani, L. Zhai, A. Sadmani, "Removing Heavy Metals from Landfill Leachate Using Electrospun Polyelectrolyte Fiber Mat-Laminated Ultrafiltration Membrane", Journal of Environmental Chemical Engineering, vol. 9, no. 53, 2021. [DOI:10.1016/j.jece.2021.105355]
5. [5] S. Arefi, A. Khataee, M. Safarpourd, V. Vatanpour, "Modification of Polyethersulfone Ultrafiltration Membrane Using Ultrasonicassisted Functionalized MoS2 for Treatment of Oil Refinery Wastewater", Separation and Purification Technology, vol. 238, no. 6495, 2020. [DOI:10.1016/j.seppur.2019.116495]
6. [6] Z. Kiamehr, S. Farahani, B. Farokhi S. Hosseini, "Investigation the Effect of Ar-Air plasma Treatment on Separation Performance of Nanofiltration Membrane: Influence of Time, Power and Composition of Plasma", petroleum Research, vol. 31, no. 105, 2021.
7. [7] Z. Kiamehr, "Modification of a highly-permeable thin-film-based nanofiltration membrane (PVC) to increase efficiency and separation by Air Plasma Treatment", IEEE Trans. Plasma Sci. vol. 50, no. 2952, 2022. [DOI:10.1109/TPS.2022.3193965]
8. [8] A. Broeckmann, J. Busch, T. Wintgens, W. Marquardt, "Modeling of Pore Blocking and Cake Layer Formation in Membrane Filtration for Wastewater Treatment." Desalination, vol. 189, no. 97, 2006. [DOI:10.1016/j.desal.2005.06.018]
9. [9] I. Soroko, Y. Bhole, A. Livingston, "Environmentally Friendly Route for the Preparation of Solvent Resistant Polyimide Nanofiltration Membranes", Green Chemistry, vol. 13, no. 162, 2011. [DOI:10.1039/C0GC00155D]
10. [10] Y. Zhao, X. Zhu, K. Wee, R. Bai, "Achieving Highly Effective Non-Biofouling Performance for Polypropylene Membranes Modified by Uv-Induced Surface Graft Polymerization of Two Oppositely Charged Monomers", The Journal of Physical Chemistry B, vol. 114, no. 2422, 2010. [DOI:10.1021/jp908194g]
11. [11] Y. Chiao, S. Chen, M. Sivakumar, M. Ang, T. Patra, J. Almodovar, R. Wickramasinghe, W. Hung, "Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property" Polymers, vol. 12, no. 1, 2020. [DOI:10.3390/polym12061303]
12. [12] Z. Kiamehr, S. Mozaffari, "Investigating the wetting behavior of polypropylene hydrophobic membrane using CF4 plasma treatment", Modern Physics Letters B, vol. 37, PP. 2350104, 2023. [DOI:10.1142/S021798492350104X]
13. [13] T. Nguyen, F. Roddick, L. Fan, "Biofouling of water treatment membranes", Membranes, vol. 2, no. 804, 2012. [DOI:10.3390/membranes2040804]
14. [14] Y. Koc, A. Mello, G. McHale, M. Newton, P. Roach, N. Shirtcliffe, "Nano-scale Superhydrophobicity: Suppression of Protein Adsorption and Promotion of Flow-induced Detachment", Lab on a Chip, vol. 8, no. 528, 2008. [DOI:10.1039/b716509a]
15. [15] P. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podesta, P. Milani, "The Effect of Surface Nanometre-scale Morphology on Protein Adsorption", PloS One, vol. 5, pp. 11862, 2010. [DOI:10.1371/journal.pone.0011862]
16. [16] Q. Wang, Z. Wang, J. Wang, Z. Wu, "Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalace monitoring," RSC Adv, vol. 4, pp. 43990, 2014. [DOI:10.1039/C4RA07274J]
17. [17] D. Rana, T. Matsuura, "Surface modifications for antifouling membranes", Chem. Rev, vol. 110, pp. 2448, 2010. [DOI:10.1021/cr800208y]
18. [18] A. Rahimpour, "Photo-Grafting of Hydrophilic Monomers onto the Surface of Nano-Porous Pes Membranes for Improving Surface Properties", Desalination, vol. 265, no. 93, 2011. [DOI:10.1016/j.desal.2010.07.037]
19. [19] M. Padaki, A. Isloor, R. Kumar, A. Ismail, T. Matsuura, "Characterization and Desalination Study of Composite Nf Membranes", Journal of Membrane Science, vol. 428, no. 489, 2013. [DOI:10.1016/j.memsci.2012.11.001]
20. [20] Z. Chong, Y. Koo, "Self-Assembling of NCQDs-TiO2 Nanocomposite on Poly(Acrylic Acid)- Grafted Polyethersulfone Membrane for Photocatalytic Removal and Membrane Filtration", Materials Today: Proceedings, vol. 46, pp. 1901, 2021. [DOI:10.1016/j.matpr.2021.02.021]
21. [21] A. Esfahani, L. Zhai, A. Sadmani, "Filtration of Biological Sludge by Immersed Hollow-Fiber Membranes: Influence of Initial Permeability Choice of Operating Conditions", Desalination, vol. 146, pp. 427, 2002. [DOI:10.1016/S0011-9164(02)00527-1]
22. [22] Q. Gao, H. Li, X. Zeng, "Novel Nanoparticles Incorporated Polyvinylidene Fluoride Ultrafiltration 18 Membrane" Advanced Materials Research, vol. 746, pp. 390, 2013. [DOI:10.4028/www.scientific.net/AMR.746.390]
23. [23] J. Garcia, M. Iborra, M. Alcaina, J. Mendoza L. Pastor, "Development of Fouling-Resistant Polyethersulfone Ultrafiltration Membranes via Surface UV Photografting with Polyethylene Glycol/Aluminum Oxide Nanoparticles", Separation and Purification Technology, vol. 135, pp. 88, 2014. [DOI:10.1016/j.seppur.2014.07.056]
24. [24] V. Goel, U. Mandal, "Surface Modification of Polysulfone Ultrafiltration Membrane by In-Situ Ferric Chloride Based Redox Polymerization of Aniline-Surface Characteristics and Flux Analyses", Korean Journal of Chemical Engineering, vol. 36, pp. 573, 2019. [DOI:10.1007/s11814-019-0233-y]
25. [25] V. Kochkodan, D. Johnson, N. Hilal, "Ploymeric membranes: Surface modification for minimizing (bio) colloidal fouling," Adv. Colloid Interface Sci, vol. 206, pp. 116, 2014. [DOI:10.1016/j.cis.2013.05.005]
26. [26] J. Kim, B. Bruggen, "The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ. Pollut, vol. 158, pp. 2335, 2010. [DOI:10.1016/j.envpol.2010.03.024]
27. [27] L. Ng, A. Mohammad, C. Leo, N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review", Desalination, vol. 308, no. 15, 2013. [DOI:10.1016/j.desal.2010.11.033]
28. [28] R. Damodar, S. You, H. Chou, "Study the self-cleaning, antibacterial and photocatalytic properties of TiO 2 entrapped PVDF membranes", J. Hazard. Mater, vol. 172, pp. 1321, 2009. [DOI:10.1016/j.jhazmat.2009.07.139]
29. [29] H. Song, J. Shao, Y. He, B. Liu, X. Zhong, "Natural organic matter removal and flux decline with PEG- TiO 2-doped PVDF membranes by integration of ultrafiltration with photocatalysis", J. Membr. Sci, vol. 405, no. 48, 2012. [DOI:10.1016/j.memsci.2012.02.063]
30. [30] V. Vatanpour, S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, "Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite", Journal of Membrane Science, vol. 375, pp. 284, 2011. [DOI:10.1016/j.memsci.2011.03.055]
31. [31] S. Madaeni, S. Zinadini, V. Vatanpour, "A New Approach to Improve Antifouling Property of Pvdf Membrane Using in Situ Polymerization of Paa Functionalized TiO2 Nanoparticles", Journal of Membrane Science, vol. 380, pp. 155, 2011. [DOI:10.1016/j.memsci.2011.07.006]
32. [32] V. Vatanpour, S. Madaeni, L. Rajabi, S. Zinadini, A. Derakhshan, "Boehmite Nanoparticles as a New Nanofiller for Preparation of Antifouling Mixed Matrix Membranes", Journal of Membrane Science, vol. 401, pp. 132, 2012. [DOI:10.1016/j.memsci.2012.01.040]
33. [33] S. Zinadini, A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, "Preparation of a Novel Antifouling Mixed Matrix Pes Membrane by Embedding Graphene Oxide Nanoplates", Journal of Membrane Science, vol. 453, pp. 292, 2014. [DOI:10.1016/j.memsci.2013.10.070]
34. [34] K. Al Mahmud, M. Kalam, H. Masjuki, H. Mobarak, N. Zulkifli, "An updated overview of diamond-like carbon coating in tribology", Crit. Rev. Solid State Mater. Sci. vol. 40, no. 90, 2015. [DOI:10.1080/10408436.2014.940441]
35. [35] R. Roy, S. Ahmed, J. Yi, M. Moon, K. Lee, Y. Jun, "Improvement of adhesion of DLC coating on nitinol substrate by hybrid ion beam deposition technique", Vac, pp. 1179-1183, 2009. [DOI:10.1016/j.vacuum.2009.03.005]
36. [36] J. Li, Z. Xu, H. Yang, C. Feng, J. Shi, "Hydrophilic micro porous PES membranes prepared by PES/PEG/DMAc casting solutions", Journal of applied polymer science, vol. 107, pp. 4100, 2008. [DOI:10.1002/app.27626]
37. [37] L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, M. Sun, "Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue", Journal of Hazardous Materials, vol. 215, pp. 272, 2012. [DOI:10.1016/j.jhazmat.2012.02.068]
38. [38] P. Qu, H. Tang, Y. Gao, L. Zhang, S. Wang, "Polyethersulfone Composite Membrane Blended with Cellulose Fibrils", BioResources, vol. 5, pp. 2323, 2010. [DOI:10.15376/biores.5.4.2323-2336]
39. [39] D. Pavia, G. Lampman, G. Kriz, G. Randall, "Introduction to Organic Laboratory Techniques: A Small-Scale Approach: Cengage Learning", Second ed., Brooks/Cole: Belmont, CA, 2005.
40. [40] L. Ge, Z. Zhu, V. Rudolph, "Enhanced Gas Per- meability by Fabricating Functionalized Multi-Walled Carbon Nanotubes and Polyethersulfone Nanocomposite Membrane", Separation and Purification Technology, vol. 78, no. 76, 2011. [DOI:10.1016/j.seppur.2011.01.024]
41. [41] B. Li, W. Zhao, Y. Su, Z. Jiang, X. Dong, W. Liu, "Enhanced Desulfurization Performance and Swelling Re- sistance of Asymmetric Hydrophilic Pervaporation Mem- brane Prepared Through Surface Segregation Technique", Journal of Membrane Science, vol. 326, pp. 556, 2009. [DOI:10.1016/j.memsci.2008.10.032]
42. [42] J. Jhaveri, C. Patel, Z. Murthy, "Preparation, characterization and application of GO-TiO2 /PVC mixed matrix membranes for improvement in performance", Journal of Industrial and Engineering Chemistry, vol. 52, no. 138, 2017. [DOI:10.1016/j.jiec.2017.03.035]
43. [43] F. Wu, R. Tseng, R. Juang, "A review and experimental verification of using chitosan and its deriva-tives as adsorbents for selected heavy metals", Journal of Environmental Management, vol. 91, pp. 798, 2010. [DOI:10.1016/j.jenvman.2009.10.018]
44. [44] V. Vatanpour, S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, "Novel anti befouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes", Separation and Purification Technology, vol. 90, no. 69, 2012. [DOI:10.1016/j.seppur.2012.02.014]
45. [45] R. Damodar, S. You, H. Chou, "Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes", Journal of Hazardous Materials, vol. 172, pp. 1321, 2009. [DOI:10.1016/j.jhazmat.2009.07.139]
46. [46] M. Li, Z. Zeng, Y. Zhao, C. Hong, Q. Li, "Development of an antimicrobial and antifouling PES membrane with ZnO/Poly(hexamethylene biguanide) nanocomposites incorporation", Chemical Engineering Journal, vol. 481, pp. 148744, 2024. [DOI:10.1016/j.cej.2024.148744]
47. [47] C. Liu, M. Zhang, F. Gao, P. Hong, Z. Wang, "Ta-Fe in-situ coating PES membrane and its application in oily wastewater treatment: insight into modification and anti-fouling mechanisms", Separation and Purification Technology, vol. 346, pp. 127506, 2024. [DOI:10.1016/j.seppur.2024.127506]
48. [48] R. Desiriani, L. Marbelia, A. Kurniawan, I.G. Wenten, "Preparation of polyethersulfone ultrafiltration membrane coated natural additives toward antifouling and antimicrobial agents for surface water filtration", Journal of Environmental Chemical Engineering, vol. 12, pp. 111797, 2024. [DOI:10.1016/j.jece.2023.111797]
49. [49] M. Zhai, Y. Li, J. Wang, F. Liu, "High-performance loose nanofiltration membranes with excellent antifouling properties for dye/salt separation", Journal of Membrane Science, vol. 708, pp. 123028, 2024. [DOI:10.1016/j.memsci.2024.123028]
50. [50] F. Pasandidehpour, S.R. Ghaffarian, T. Mohammadi, "A Review of the Performance of Nanofiltration Membranes Modified with Inorganic, Carbon Nanomaterials and their Combinations", Journal of Water and Wastewater Science and Engineering, vol. 8, pp. 15, 2023.
51. [51] M.E. Batouti, O.M. Ahmed, R. El-Ghazaly, "Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications", Separations, vol. 9, no. 1, 2022. [DOI:10.3390/separations9010001]
52. ]52[ ز کیامهر، ب فرخی، م حسینی، 1400، تاثیر پلاسما بر خواص شیمی-فیزیکی غشاء نانوفیلتراسیون مورد استفاده در دستگاههای تصفیه آب دریا، دانشگاه اراک، pp. 1-130.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.