logo
Volume 9, Issue 2 (Autumn and Winter 2024 2025)                   JMRPh 2025, 9(2): 57-81 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kiamehr Z, Shafiee M, Shokri B. Comprehensive understanding of Li-S battery technology and development of nanomaterials for high-performance energy storage technology. JMRPh 2025; 9 (2) :57-81
URL: http://jmrph.khu.ac.ir/article-1-258-en.html
Tafresh University
Abstract:   (181 Views)
Entering the 21st century, with the ongoing energy crisis and the intensification of environmental pollution and energy storage technologies, renewable energy has attracted the attention of the whole human society. Compared with other energy storage systems, lithium-sulfur (Li-S) batteries are considered as one of the most promising systems for next-generation rechargeable batteries due to their high energy density and low cost. However, both cathode and anode materials face serious shortcomings in practical applications. For cathode materials, the shuttle effect and the loss of cathode active materials due to volume expansion during cycling are often considered as the main reasons for the energy reduction of lithium-sulfur batteries. For anode materials, the failure to inhibit the growth of lithium dendrites often leads to internal short circuits in the battery, which leads to serious thermal runaway of the battery. At the same time, the rapid development of nanotechnology has brought technological breakthroughs in various scientific fields. In this study, some of the latest nanotechnologies that have been systematically applied to improve the electrochemical performance of lithium-sulfur batteries are outlined. In addition, we rationally outlined strategies to reduce the negative effects of shuttle effects and suppress the growth of lithium dendrites. The use of nanotechnology can effectively increase the discharge capacity, improve the cycle stability, and enhance the safety of high-energy-density lithium-sulfur batteries. This research may provide insights into the development of nanotechnology for large-scale energy storage.
Full-Text [PDF 1645 kb]   (61 Downloads)    
Type of Study: case report | Subject: Special
Received: 2025/03/13 | Accepted: 2025/08/21 | Published: 2025/03/15 | ePublished: 2025/03/15

References
1. [1] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, "Na-ion batteries, recent advances and present challenges to become low cost energy storage systems", Energy Environ. Sci., vol. 5, pp. 5884-5901, 2012. [DOI:10.1039/c2ee02781j]
2. [2] F. Wu, J. Qian, R. Chen, J. Lu, L. Li, H. Wu, J. Chen, T. Zhao, Y. Ye, K. Amine, "An effective approach to protect lithium anode and improve cycle performance for Li-S batteries", ACS Appl. Mater. Interfaces, vol. 6, pp. 15542-15549, 2014. [DOI:10.1021/am504345s] [PMID]
3. [3] A. Vizintin, M. U. M. Patel, B. Genorio, R. Dominko, "Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries", ChemElectroChem, vol. 1, pp. 1040-1045, 2014. [DOI:10.1002/celc.201402039]
4. [4] K. Liu, Y. Lin, J. D. Miller, J. Liu, X. Wang, "Study of sucrose based room temperature solid polymer electrolyte for lithium sulfur battery", J. Electrochem. Soc., vol. 164, pp. A447-A452, 2017. [DOI:10.1149/2.1281702jes]
5. [5] H. Jiajun, L. Xiaodong Li, "Recent materials development for Li-ion and Li-S battery separators", Journal of Energy Storage, vol. 112, pp. 115541, 2025. [DOI:10.1016/j.est.2025.115541]
6. [6] J. Luo, R.-C. Lee, J.-T. Jin, Y.-T. Weng, C.-C. Fang, N.-L. Wu, "A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries", Chem. Commun., vol. 53, pp. 963-966, 2017. [DOI:10.1039/C6CC09248A] [PMID]
7. [7] Z. She, Y. Sun, Q. Zhang, Y. Cui, "Designing high-energy lithium-sulfur batteries", Chem. Soc. Rev., vol. 45, PP. 5605-5634, 2016. [DOI:10.1039/C5CS00410A] [PMID]
8. [8] R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, "Anodes for rechargeable lithium‐sulfur batteries", Adv. Energy Mater., vol. 5, pp. 1402273, 2015. [DOI:10.1002/aenm.201402273]
9. [9] A. Vizintin, M. Patel, B. Genorio, R. Dominko, "Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries", ChemElectroChem, vol. 1, pp. 1040-1045, 2014. [DOI:10.1002/celc.201402039]
10. [10] K. Liu, Y. Lin, J.D. Miller, J. Liu, X. Wang, "Study of sucrose based room temperature solid polymer electrolyte for lithium sulfur battery", J. Electrochem. Soc., vol. 164, PP. A447-A452, 2017. [DOI:10.1149/2.1281702jes]
11. [11] J. Luo, R. Lee, J. Jin, Y. Weng, C. Fang, N. Wu, "A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries", Chem. Commun., vol. 53, pp. 963-966, 2017. [DOI:10.1039/C6CC09248A] [PMID]
12. [12] Z. Deming, et.al., "Vertically Integrated Supply Chain of Batteries, Electric Vehicles, and Charging Infrastructure: A Review of Three Milestone Projects from Theory of Constraints Perspective ", Journal of Energy Chemistry, vol. 57, pp. 41-60, 2021.
13. [13] R. Cao, W. Xu, D. Lv, J. Xiao, and J. Zhang, "Improved electrochemical performance of biomass-derived nanoporous carbon/sulfur composites cathode for lithium-sulfur batteries by nitrogen doping", Adv. Energy Mater. vol. 5, pp. 1402273-1402295, 2015.
14. [14] K.A. See, H. Wu, K. Lau, M. Shin, L. Cheng, M. Balasubramanian, K. Gallagher, L. Curtiss, A. Gewirth, "Effect of hydrofluoroether cosolvent addition on Li solvation in acetonitrile-based solvate electrolytes and its influence on S reduction in a Li-S battery", ACS Appl. Mater. Interfaces., vol. 8, pp. 34360-34371, 2016. [DOI:10.1021/acsami.6b11358] [PMID]
15. [15]. K. Ssendagire, K. Jungmin, K. Jeongtae, P. Isheunesu, "Water-based dual polymer ceramic-coated composite separator for high-energy-density lithium secondary batteries", Journal of Industrial and Engineering Chemistry, vol. 130, pp. 638-647, 2024. [DOI:10.1016/j.jiec.2023.10.017]
16. [16]. Y. Shanshan, et.al., "Comparative study of the electrochemical performances of different polyolefin separators in lithium/sulfur batteries", Materials Research Bulletin, vol. 171, pp. 112604, 2024. [DOI:10.1016/j.materresbull.2023.112604]
17. [17]. W. Haihua, H. Yun, L. Xuan, S. Liyu, N. Huizhu, D. Yifan, W. Jie, "Hierarchical self‐assembly of tannic acid/diethylenetriamine on polypropylene for high‐performance separator", journal of applied polymer science, vol. 141, pp. 15, 2024. [DOI:10.1002/app.55222]
18. [18] Z. Zhang, Q. Li, K. Zhang, W. Chen, Y. Lai, J. Li, "Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium-sulfur batteries", J. Power Sources., vol. 290, pp. 159-167, 2015. [DOI:10.1016/j.jpowsour.2015.05.010]
19. [19] G. Zhou, D. Wang, F. Li, P. Hou, L. Yin, C. Liu, G. Lu, I. Gentle, H. Cheng, "A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries", Energy Environ. Sci., vol. 5, pp. 8901-8906, 2012. [DOI:10.1039/c2ee22294a]
20. [20] L. Zeng, F. Pan, W. Li, Y. Jiang, X. Zhong, Y. Yu, "Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode", Nanoscale, vol. 6, pp. 9579-9587, 2014. [DOI:10.1039/C4NR02498B] [PMID]
21. [21] L. Zeng, W. Zeng, Y. Jiang, X. Wei, W. Li, C. Yang, Y. Zhu, Y. Yu, "Membranes of MnO beading in carbon nanofibers as flexible anodes for high-performance lithium-ion batteries", Adv. Energy Mater., vol. 5, pp. 1401377-1401386, 2015. [DOI:10.1038/srep14146] [PMID] []
22. [22] S. Thieme, J. Brueckner, I. Bauer, M. Oschatz, L. Borchardt, H. Althues, S. Kaskel, "High capacity micro-mesoporous carbon-sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure", J. Mater. Chem. A, 2013, vol. 1, pp. 9225-9234, 2013. [DOI:10.1039/c3ta10641a]
23. [23] Q. Sun, X. Fang, W. Weng, J. Deng, P. Chen, J. Ren, G. Guan, M. Wang, H. Peng, "An aligned and laminated nanostructured carbon hybrid cathode for high‐performance lithium-sulfur batteries", Angew. Chem. Int. Ed., vol. 54, pp. 10539-10544, 2015. [DOI:10.1002/anie.201504514] [PMID]
24. [24] K. Lee, R. Black, T. Yim, X. Ji, L. Nazar, "Surface‐initiated growth of thin oxide coatings for Li-sulfur battery cathodes", Adv. Energy. Mater. vol. 2, pp. 1490-1496, 2012. [DOI:10.1002/aenm.201200006]
25. [25] D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, W. Li, "High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery", ACS Appl. Mater. Interfaces, vol. 5, pp. 2208-2213, 2013. [DOI:10.1021/am4000535] [PMID]
26. [26] Y. Chen, S. Lu, X. Wu, J. Liu, "Flexible carbon nanotube-graphene/sulfur composite film: free-standing cathode for high-performance lithium/sulfur batteries", J. Phys. Chem. C, vol. 119, pp. 10288-10294, 2015. [DOI:10.1021/acs.jpcc.5b02596]
27. [27] C. Wang, K. Su, W. Wan, H. Guo, H. Zhou, J. Chen, X. Zhang, Y. Huang, "High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries", J. Mater. Chem. A, vol. 2, pp. 5018-5023, 2014. [DOI:10.1039/C3TA14921H]
28. [28] H. Wang, W. Zhang, H. Liu, Z. Guo, "A strategy for configuration of an integrated flexible sulfur cathode for high‐performance lithium-sulfur batteries", Angew. Chem. Int. Ed. vol. 55, pp. 3992-3996, 2016. [DOI:10.1002/anie.201511673] [PMID]
29. [29] L. Sun, W. Kong, Y. Jiang, H. Wu, K. Jiang, J. Wang, S. Fan, "Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries", J. Mater. Chem. A, vol. 3, pp. 5305-5312, 2015. [DOI:10.1039/C4TA06255H]
30. [30] C. Wang, X. Wang, Y. Wang, J. Chen, H. Zhou, Y. Huang, "Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery", Nano Energy, vol. 11, pp. 678-686, 2015. [DOI:10.1016/j.nanoen.2014.11.060]
31. [31] X. Song, S Wang, Y. Bao, G. Liu, W. Sun, L. Ding, H. Liu, H. Wang, "A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium-sulfur batteries", J. Mater. Chem. A, vol. 5, pp. 6832-6839, 2017. [DOI:10.1039/C7TA01171G]
32. [32] Y. Guo, G. Zhao, N. Wu, Y. Zhang, M. Xiang, B. Wang, H. Liu, H. Wu, "Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li-S batteries", ACS Appl. Mater. Interfaces, vol. 8, pp. 34185-34193, 2016. [DOI:10.1021/acsami.6b13455] [PMID]
33. [33] C. Lin, C.J. Niu, X. Xu, K. Li, Z.Y. Cai, Y.L. Zhang, X.P. Wang, L.B. Qu, Y.X. Xu, "A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li-S cathodes" Phys. Chem. Chem. Phys., vol. 18, pp. 22146-22153, 2016. [DOI:10.1039/C6CP03624D] [PMID]
34. [34] Z.A. Ghazi, X. He, A.M. Khattak, NA Khan B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li, Z. Tang, "Design and synthesis of novel sandwich-type C@ TiO 2@ C hollow microspheres as efficient sulfur hosts for advanced lithium-sulfur batteries", Adv. Mater., vol. 29, pp. 1606817-1606822, 2017. [DOI:10.1002/adma.201606817] [PMID]
35. [35] Y.B. An, Q.Z. Zhu, L.F. Hu, S.K. Yu, Q. Zhao, B. Xu, "A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium-sulfur batteries", J. Mater. Chem. A, vol. 4, pp. 15605-15611, 2016. [DOI:10.1039/C6TA06088A]
36. [36] J. Song, Z. Yu, T. Xu, S. Chen, H. Sohn, M. Regula, D. Wang, "Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithium-sulfur batteries", J. Mater. Chem. A, vol. 2, pp. 8623-8627, 2014. [DOI:10.1039/C4TA00742E]
37. [37] C. Milroy, and A Manthiram, "An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium-Sulfur Batteries.", Adv. Mater., vol. 28, pp. 9744-9751, 2016. [DOI:10.1002/adma.201601665] [PMID]
38. [38] A. Ghosh, R. Manjunatha, R. Kumar, S. Mitra, "A facile bottom-up approach to construct hybrid flexible cathode scaffold for high-performance lithium-sulfur batteries", ACS Appl. Mater. Interfaces, vol. 8, pp. 33775-33785, 2016. [DOI:10.1021/acsami.6b11180] [PMID]
39. [39] C. Wang, X. Wang, Y. Yang, A. Kushima, J. Chen, Y. Huang, J. Li, "Slurryless Li2S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery", Nano Lett., vol. 15, pp. 1796-1802, 2015. [DOI:10.1021/acs.nanolett.5b00112] [PMID]
40. [40] J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, W. Qin, W. He, "From Metal-Organic Framework to Li2S@C-Co-N Nanoporous Architecture: A High-Capacity Cathode for Lithium-Sulfur Batteries", ACS Energy Lett., vol. 1, pp. 820-826, 2016. [DOI:10.1021/acsnano.6b05696] [PMID]
41. [41] J. He, Y. Chen, W. Lv, K. Wen, Z. Wang, W. Zhang, Y. Li, W. Qin, W. He, "Employing ZIF-67 architectures into 2D CoTe-based hybrid composites for exceptionally stable supercapacitor electrode with improved capacitive performance", ASC Nano, vol. 10, pp. 8837-8842, 2016.
42. [42] Y. Huang, M. Zheng, Z. Lin, B. Zhao, S. Zhang, J. Yang, C. Zhu, H. Zhang, D. Sun, Y. Shi, "Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium-sulfur batteries", J. Mater. Chem. A, vol. 3, pp. 10910-10918, 2015. [DOI:10.1039/C5TA01515D]
43. [43] M. Armand, and J. Tarascon, "Building better batteries". Nature, no. 451, pp. 652-657, 2008. [DOI:10.1038/451652a] [PMID]
44. [44] S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, L. Qi, "Self-supported Li 4 Ti 5 O 12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life", Energy Environ. Sci., vol. 7, pp. 1924-1930, 2014. [DOI:10.1039/c3ee42646g]
45. [45] R. Khurana, J. Schaefer, L. Archer, G. Coates, "Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries", J. Am. Chem. Soc., vol. 136, pp. 7395-7402, 2014. [DOI:10.1021/ja502133j] [PMID]
46. [46] S. Ramesh, and M. Chai, "Conductivity, dielectric behavior and FTIR studies of high molecular weight poly (vinylchloride)-lithium triflate polymer electrolytes", Mater. Sci. Eng., vol. 139, pp. 240-245, 2007. [DOI:10.1016/j.mseb.2007.03.003]
47. [47] S. Ramesh, T. Winie, A. Arof, "Investigation of mechanical properties of polyvinyl chloride-polyethylene oxide (PVC-PEO) based polymer electrolytes for lithium polymer cells", Eur. Polym. J., vol. 43, pp. 1963-1968, 2007. [DOI:10.1016/j.eurpolymj.2007.02.006]
48. [48] J. Tarascon, and M. Armand, "Issues and challenges facing rechargeable lithium batteries", Issues and challenges facing rechargeable lithium batteries. Nature, vol. 414, pp. 359-367, 2001. [DOI:10.1038/35104644] [PMID]
49. [49] Y. Zhang, Y. Zhao, Z. Bakenov, "A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte", Nanoscale Res. Lett., vol. 9, pp. 137-143, 2014. [DOI:10.1186/1556-276X-9-137] [PMID] []
50. [50] Y. Zhao, Y. Zhang, Z. Bakenov, P. Chen, "Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode", Solid State Ionics, vol. 234, pp. 40-45, 2013. [DOI:10.1016/j.ssi.2013.01.002]
51. [51] M. Liu, D. Zhou, Y. He, Y. Fu, X. Qin, C. Miao, H. Du, B. Li, Q. Yang, Z. Lin, "Novel gel polymer electrolyte for high-performance lithium-sulfur batteries", Nano Energy, vol. 22, pp. 278-289, 2016. [DOI:10.1016/j.nanoen.2016.02.008]
52. [52] C. Barchasz, F. Molton, C. Duboc, J. C. Lepretre, S. Patoux, F. Alloin, "Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification", Anal. Chem., vol. 84, pp. 3973-3980, 2012. [DOI:10.1021/ac2032244] [PMID]
53. [53] J. Gao, M. Lowe, Y. Kiya, H. Abruna, "Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic", J. Phys. Chem. C, vol. 115, pp. 25132-25137, 2011. [DOI:10.1021/jp207714c]
54. [54] J. Xu, J. Li, Y. Zhu, K. Zhu, Y. Liu, J. Liu, "A triPEG-boron based electrolyte membrane for wide temperature lithium ion batteries", RSC Adv., vol. 6, pp. 20343-20348, 2016. [DOI:10.1039/C6RA02865A]
55. [55] F. Croce, G. Appetecchi, L. Persi, B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries", Nature, vol. 394, pp. 456-458, 1998. [DOI:10.1038/28818]
56. [56] Y. Aihara, G. Appetecchi, B. Scrosati, "A new concept for the formation of homogeneous, poly (ethylene oxide) based, gel-type polymer electrolyte", J. Electrochem. Soc., vol. 149, pp. A849-A854, 2002. [DOI:10.1149/1.1481524]
57. [57] S. Zhang, "A concept for making poly (ethylene oxide) based composite gel polymer electrolyte lithium/sulfur battery", J. Electrochem. Soc., vol. 160, pp. A1421-A1424, 2013. [DOI:10.1149/2.058309jes]
58. [58] Y. Lin, X. Wang, J. Liu, J. Miller, "Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries", Nano Energy, vol. 31, pp. 478-485, 2017. [DOI:10.1016/j.nanoen.2016.11.045]
59. [59] S. Choudhury, R. Mangal, A. Agrawal, L. Archer, "Holey graphene oxide as filler to improve electrochemical performance of solid polymer electrolytes", Nat. Commun., vol. 6, pp. 10101-10109, 2015.
60. [60] M.B. Berman, and S. Greenbaum, "NMR studies of solvent-free ceramic composite polymer electrolytes-A brief review", Membranes, vol. 5, pp. 915-923, 2015. [DOI:10.3390/membranes5040915] [PMID] []
61. [61] X. Ji, S. Evers, R. Black, L. Nazar, "A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries", Nat. Commun., vol. 2, pp. 1-7, 2011.
62. [62] Y. Zhao, Y. Zhang, D. Gosselink, T. Doan, M. Sadhu, H. J. Cheang, P. Chen, "Polymer electrolytes for lithium/sulfur batteries", Membranes, vol. 2, pp. 553-564, 2012. [DOI:10.3390/membranes2030553] [PMID] []
63. [63] S. Choudhury, T. Saha, K. Naskar, M. Stamm, G. Heinrich, A. Das, "A highly stretchable gel-polymer electrolyte for lithium-sulfur batteries", Polymer, vol. 112, pp. 447-456, 2017. [DOI:10.1016/j.polymer.2017.02.021]
64. [64] B. Kurc, and T. Jesionowski, "Modified TiO2-SiO2 ceramic filler for a composite gel polymer electrolytes working with LiMn2O4", J. Solid State Electrochem., vol. 19, pp. 1427-1435, 2015. [DOI:10.1007/s10008-015-2762-6]
65. [65]. T Yu, Y Liu, H Li, Y Sun, S Guo, H Zhou, "Ductile inorganic solid electrolytes for all-solid-state lithium batteries", Chemical Reviews, vol. 6, pp. 3595-3662, 2025. [DOI:10.1021/acs.chemrev.4c00894] [PMID]
66. [66]. T Fang, et. al., "A Review of the Application of Metal-Based Heterostructures in Lithium-Sulfur Batteries", vol. 15, pp. 106-111, 2025. [DOI:10.3390/catal15020106]
67. [67]. Y. Bai, et.al., "Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li-S battery", Chemical Engineering Journal, 2020, vol. 396, pp. 125334, 2020. [DOI:10.1016/j.cej.2020.125334]
68. [68] S. Park, Y. Lee, D. Kim, "High-performance lithium-ion polymer cells assembled with composite polymer electrolytes based on core-shell structured SiO2 particles containing poly", J. Electrochem. Soc., vol. 162, pp. A3071-A3076, 2015. [DOI:10.1149/2.0081502jes]
69. [69] S. Ju, Y. Lee, Y. Sun, D. Kim, "Unique core-shell structured SiO 2 (Li+) nanoparticles for high-performance composite polymer electrolytes", J. Mater. Chem. A, vol. 1, pp. 395-401, 2013. [DOI:10.1039/C2TA00556E]
70. [70] L. Jin, H. Wu, M. Morbidelli, "Synthesis of Water-Based Dispersions of Polymer/TiO2 Hybrid Nanospheres", Nanomaterials, vol. 5, pp. 1454-1468, 2015. [DOI:10.3390/nano5031454] [PMID] []
71. [71] M. Chaimberg, and Y. Cohen, "Note on the silylation of inorganic oxide supports", J. Colloid Interface Sci., vol. 134, pp. 576-579, 1990. [DOI:10.1016/0021-9797(90)90164-J]
72. [72] M. Iijima, M. Kobayakawa, H. Kamiya, "Tuning the stability of TiO2 nanoparticles in various solvents by mixed silane alkoxides", J. Colloid Interface Sci., vol. 337, pp. 61-65, 2009. [DOI:10.1016/j.jcis.2009.05.007] [PMID]
73. [73] M. Patel, R. Demir-Cakan, M. Morcrette, J. Tarascon, M. Gaberscek, R. Dominko, "Li-S battery analyzed by UV/Vis in operando mode", ChemSusChem, vol. 6, pp. 1177-1181, 2013. [DOI:10.1002/cssc.201300142] [PMID]
74. [74] N. Deng, W. Kang, Y. Liu, J. Ju, D. Wu, L. Li, B. Hassan, B. Cheng, "A review on separators for lithiumsulfur battery: progress and prospects", J. Power Sources, vol. 331, pp. 132-155, 2016. [DOI:10.1016/j.jpowsour.2016.09.044]
75. [75] L. Yang, G. Li, X. Jiang, T. Zhang, H. Lin, J. Lee, "Crystallography, packing mode, and aggregation state of chlorinated isomers for efficient organic solar cells", J. Mater. Chem. A, vol. 5, pp. 2506-12512, 2017.
76. [76] X. Zhou, Q. Liao, T. Bai, J. Yang, "Nitrogen-doped microporous carbon from polyaspartic acid bonding separator for high performance lithium-sulfur batteries", J. Electroanal. Chem., vol. 791, pp. 167-174, 2017. [DOI:10.1016/j.jelechem.2017.03.004]
77. [77] P. Zuo, J. Hua, M. He, H. Zhang, Z. Qian, Y. Ma, C. Du, X. Cheng, Y. Gao, G. Yin, "Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium-sulfur batteries", J. Mater. Chem. A, vol. 5, pp. 10936-10945, 2017. [DOI:10.1039/C7TA02245J]
78. [78] Y. Lu, S. Gu, J. Guo, K. Rui, C. Chen, S. Zhang, J. Jin, J. Yang, Z. Wen, "Sulfonic groups originated dual-functional interlayer for high performance lithium-sulfur battery", ACS Appl. Mater. Interfaces, vol. 9, pp. 14878-14888, 2017. [DOI:10.1021/acsami.7b02142] [PMID]
79. [79] C. Oh, N. Yoon, J. Choi, Y. Choi, S. Ahn, J. Lee, "Enhanced Li-S battery performance based on solution-impregnation-assisted sulfur mesoporous carbon cathodes and a carbon-coated separator", J. Mater. Chem. A, vol. 5, pp. 5750-5760, 2017. [DOI:10.1039/C7TA01161J]
80. [80] G. Zhou, L. Li, D. Wang, X. Shan, S. Pei, F. Li, H. Cheng, "TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries", Adv. Mater. vol. 27, pp. 641-647, 2015. [DOI:10.1002/adma.201404210] [PMID]
81. [81] Y. Jiang, F. Chen, Y. Gao, Y. Wang, S. Wang, Q. Gao, Z. Jiao, B. Zhao, Z. Chen, "Inhibiting the shuttle effect of Li-S battery with a graphene oxide coating separator: Performance improvement and mechanism study", J. Power Sources, vol. 342, pp. 929-938, 2017. [DOI:10.1016/j.jpowsour.2017.01.013]
82. [82] S. Abbas, M. Ibrahem, L. Hu, C. Lin, J. Fang, K. Boopathi, P. Wang, L. Li, C. Chu, "Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries", J. Mater. Chem. A, 2016, vol. 4, pp. 9661-9669, 2016. [DOI:10.1039/C6TA02272C]
83. [83] Y. Cui, and Y. Fu, "Polysulfide transport through separators measured by a linear voltage sweep method", J. Power Sources, vol. 286, pp. 557-560, 2015. [DOI:10.1016/j.jpowsour.2015.04.033]
84. [84]. Y. Xiaoping, Q. Guoqing, L. Xunliang, D. Christopher, "Enhanced hydrophobic interaction between fish (Cyprinus carpio L.) scale gelatin and curcumin: Mechanism study", Journal of Energy Storage, vol. 121, pp. 112480, 2024.
85. [85]. Z. Li, J. Yang, M. Chhowalla, "Stabilising graphite anode with quasi-solid-state electrolyte for long-life lithium-sulfur batteries", MRS Energy & Sustainability, 2025.
86. [86] L. Kong, X. Chen, B.Q. Li, H.J. Peng, J.Q. Huang, J. Xie, Q. Zhang, "A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries", Adv. Mate. vol. 30, pp. 1705219, 2018. [DOI:10.1002/adma.201705219] [PMID]
87. [87] Y. Chen, S.H. Choi, D.W. Su, X.C. Gao, G.X. Wang, "Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries", Nano Energy, vol. 47, pp. 331, 2018. [DOI:10.1016/j.nanoen.2018.03.008]
88. [88] M. Li, Y.N. Zhang, X.L. Wang, W. Ahn, G.P. Jiang, K. Feng, G. Lui, Z.W. Chen, "Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries", Adv. Funct. Mater. vol. 26, pp. 8408, 2016. [DOI:10.1002/adfm.201603241]
89. [89] X.W. Wang, T. Gao, F.D. Han, Z.H. Ma, Z. Zhang, J. Li, C.S. Wang, "Stabilizing high sulfur loading Li-S batteries by chemisorption of polysulfide on three-dimensional current collector", Nano Energy, vol. 30, pp. 700, 2016. [DOI:10.1016/j.nanoen.2016.10.049]
90. [90] H. Pan, Z.B. Cheng, Z.B. Xiao, X.J. Li, R.H. Wang, "The fusion of imidazolium‐based ionic polymer and carbon nanotubes: one type of new heteroatom‐doped carbon precursors for high‐performance lithium-sulfur", Adv. Funct. Mater. vol. 27, pp. 1703936, 2017. [DOI:10.1002/adfm.201703936]
91. [91] Z.C. Xiao, D.B. Kong, Q. Song, S.K. Zhou, Y.B. Zhang, A. Badshah, J.X. Liang, L.J. Zhi, "A facile Schiff base chemical approach: towards molecular-scale engineering of NC interface for high performance lithium-sulfur batteries", Nano Energy, vol. 46, pp. 365, 2018. [DOI:10.1016/j.nanoen.2018.02.016]
92. [92] L.C. Yin, J. Liang, G.M. Zhou, F. Li, R. Saito, H.M. Cheng, "Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations", Nano Energy, vol. 25, pp. 203, 2016. [DOI:10.1016/j.nanoen.2016.04.053]
93. [93] M.W. Xiang, H. Wu, H. Liu, J. Huang, Y.F. Zheng, L. Yang, P. Jing, Y. Zhang, S.X. Dou, H.K. Liu, "A flexible 3D multifunctional MgO‐decorated carbon foam@ CNTs hybrid as self‐supported cathode for high‐performance lithium‐sulfur batteries", Adv. Funct. Mater., vol. 27, pp. 1702573, 2017. [DOI:10.1002/adfm.201702573]
94. [94] E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, "2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries", Nat. Nanotechnol., vol. 13, pp. 337, 2018. [DOI:10.1038/s41565-018-0061-y] [PMID]
95. [95] X.Q. Zhang, B. He, W.C. Li, A.H. Lu, "Characterization of Sulfur/Graphitized Mesocarbon Microbeads Composite Cathodes for Li-S Batteries", Nano Res. vol. 11, pp. 1238, 2018.
96. [96] G.X. Li, Q.Q. Huang, X. He, Y. Gao, D.W. Wang, S.H. Kim, D.H. Wang, "Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries", ACS Nano, vol. 12, pp. 1500, 2018. [DOI:10.1021/acsnano.7b08035] [PMID]
97. [97] G. Li, X.L. Wang, M.H. Seo, M. Li, L. Ma, Y.F. Yuan, T.P. Wu, A.P. Yu, S. Wang, J. Lu, Z.W. Chen, "Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries", Nat. Commun., vol. 9, pp. 705, 2018. [DOI:10.1038/s41467-018-03116-z] [PMID] []
98. [98] H.W. Du, X.C. Gui, R.L. Yang, Z.Q. Lin, B.H. Liang, W.J. Chen, Y.J. Zheng, H. Zhu, "In situ sulfur loading in graphene-like nano-cell by template-free method for Li-S batteries", J. Chen, Nanoscale, vol. 10, pp. 3877, 2018. [DOI:10.1039/C7NR07500F] [PMID]
99. [99] J.Y. Wang, J.W. Wan, N.L. Yang, Q. Li, D. Wang, "Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour", Nat. Rev. Chem., vol. 4, pp. 159, 2020. [DOI:10.1038/s41570-020-0161-8] [PMID]
100. [100] C. Wang, J.Y. Wang, W.P. Hu, D. Wang, "Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors", Chem. Res. Chinese U. vol. 36, pp. 68, 2020. [DOI:10.1007/s40242-019-0040-3]
101. [101] X. Huang, J.Y. Tang, B. Luo, R. Knibbe, T. Lin, H. Hu, M. Rana, Y. Hu, X. Zhu, Q. Gu, D. Wang, L. Wang, "Sandwich‐Like Ultrathin TiS2 Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithium‐Sulfur Batteries", Adv. Energy Mater., vol. 9, pp. 1901872, 2019. [DOI:10.1002/aenm.201901872]
102. [102] J. Wang, J. Wan, D. Wang, "Hollow multishelled structures for promising applications: understanding the structure-performance correlation", Acc. Chem. Res., vol. 52, pp. 2169, 2016. [DOI:10.1021/acs.accounts.9b00112] [PMID]
103. [103] E. Salhabi, J. Zhao, J. Wang, M. Yang, B. Wang, D. Wang, "Hollow Multi‐Shelled Structural TiO2−x with Multiple Spatial Confinement for Long‐Life Lithium-Sulfur Batteries", Angew. Chem. Int. Ed., vol. 58, pp. 9078, 2019. [DOI:10.1002/anie.201903295] [PMID]
104. [104] D. Mao, J. Wan, J. Wang, D. Wang, "Sequential templating approach: a groundbreaking strategy to create hollow multishelled structures", Adv. Mater., vol. 31, pp. 1802874, 2018. [DOI:10.1002/adma.201802874] [PMID]
105. [105] J. Wang, Y. Cui, D. Wang, "Design of hollow nanostructures for energy storage, conversion and production", Adv. Mater., vol. 31, pp. 1801993, 2018. [DOI:10.1002/adma.201801993] [PMID]
106. [106] Y. Liu, G. Li, Z. Chen, X. Peng, "A binder-free electrode architecture design for lithium-sulfur batteries: a review", Nanoscale, vol. 5, pp. 9775, 2017.
107. [107] L. Zhu, H.J. Peng, J. Liang, J.Q. Huang, C.-M. Chen, X. Guo, W. Zhu, P. Li, Q. Zhang, "Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries", Nano Energy, vol. 11, pp. 746, 2015. [DOI:10.1016/j.nanoen.2014.11.062]
108. [108] S.Z. Huang, L.L. Zhang, J.Y. Wang, J.L. Zhu, P.K. Shen, "High sulfur loading and shuttle inhibition of advanced sulfur cathode enabled by graphene network skin and N, P, F-doped mesoporous carbon interfaces for ultra-stable lithium sulfur battery", Nano Res., vol. 11, pp. 1731, 2018.
109. [109] Y. Yang, X. Song, X.J. Li, Z.Y. Chen, C. Zhou, Q.F. Zhou, Y. Chen, "Recent progress in biomimetic additive manufacturing technology: from materials to functional structures", Adv. Mater., vol. 30, pp. 1706539, 2018. [DOI:10.1002/adma.201706539] [PMID]
110. [110] W.L. Wu, J. Pu, J. Wang, Z.H. Shen, H.Y. Tang, Z.T. Deng, X.Y. Tao, F. Pan, H.G. Zhang, "Efficient Ni2Co4P3 Nanowires Catalysts Enhance Ultrahigh‐Loading Lithium-Sulfur Conversion in a Microreactor‐Like Battery", Adv. Energy Mater., vol. 21, pp. 1702373, 2018.
111. [111] G. Ai, Y.L. Dai, W.F. Mao, H. Zhao, Y.B. Fu, X.Y. Song, Y.F. En, V. Battaglia, V. Srinivasan, G. Liu, "Biomimetic ant-nest electrode structures for high sulfur ratio lithium-sulfur batteries", Nano Letters, vol. 16, pp. 5365, 2016. [DOI:10.1021/acs.nanolett.6b01434] [PMID]
112. [112] X.Y. Tao, JT. Zhang, Y. Xia, H. Huang, J. Du, H. Xiao, W.K. Zhang, Y.P. Gan, "A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis", J. Mater. Chem. A, vol. 2, pp. 2283, 2014.
113. [113] D. Su, M. Cortie, G. Wang, "Fabrication of N‐doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries", Adv. Energy Mater., vol. 7, pp. 1602014, 2017. [DOI:10.1002/aenm.201602014]
114. [114] J.L. Wang, Z. Meng, W.T. Yang, "Advances and prospects of gC3N4 in lithium-sulfur batteries", ACS Appl. Mater. Inter., vol. 11, pp. 819, 2019. [DOI:10.1021/acsami.8b17590] [PMID]
115. [115] H.L. Wu, Y. Li, R. Ren, D.W. Rao, Q.J. Zheng, L. Zhou, D.M. Lin, "CNT-assembled dodecahedra core@ nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries", Nano Energy, vol. 55, pp. 82, 2019. [DOI:10.1016/j.nanoen.2018.10.061]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.