logo
Volume 9, Issue 2 (Autumn and Winter 2024 2025)                   JMRPh 2025, 9(2): 49-56 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nabavizadeh Z, Mohajer Mazandarani S. Optical Differentiation Between Normal And Abnormal Tissue By Henyey- Greenstein function analysis of Forward Scattering. JMRPh 2025; 9 (2) :49-56
URL: http://jmrph.khu.ac.ir/article-1-255-en.html
Physics Dep.
Abstract:   (32 Views)
Nowadays cancer is known as the second leading cause of death in the world, so early detection is important. Body mass is divided into two general categories benign and malignant types; distinguishing between these types is the most important challenge for doctors. Clinical guidelines for cancer diagnosis have several limitations, such as the need for experienced specialists, cost, and time-consuming, so the need to use low-cost and fast methods is felt. In this study, benign, malignant and health, diseased samples were cut by microtome and then fixed on slides; by using the optical scattering method and calculation of anisotropy( g  ) and the width of the H-G fitting function, the difference between benign and malignant samples is determined and differentiating between them is possible
Full-Text [PDF 823 kb]   (16 Downloads)    
Type of Study: Research | Subject: Special
Received: 2025/02/25 | Accepted: 2025/08/19 | Published: 2025/03/15 | ePublished: 2025/03/15

References
1. [1] Yvette Brazier and Tom Rush, "What are the different types of tumor?," Medically reviewed by Faith Selchick, DNP, AOCNP, Nursing, Oncology -. [Online]. Available: https://www.medicalnewstoday.com/articles/249141#diagnosis
2. [2] B. Kaur, S. Kumar, and B. K. Kaushik, "Recent advancements in optical biosensors for cancer detection," Biosens Bioelectron, vol. 197, p. 113805, Feb. 2022, doi: 10.1016/J.BIOS.2021.113805. [DOI:10.1016/j.bios.2021.113805] [PMID]
3. [3] J. M. Kreahling and S. Altiok, "Special technologies for ex vivo analysis of cancer," Cancer Control, vol. 22, no. 2, pp. 226-231, 2015. [DOI:10.1177/107327481502200215] [PMID]
4. [4] M. Salman, M. A. M. Hossein, K. S. Kamran, and M. Shayan, "Optical discrimination of benign and malignant oral tissue using Z-scan technique," Photodiagnosis Photodyn Ther, vol. 16, pp. 54-59, Dec. 2016, doi: 10.1016/j.pdpdt.2016.08.001. [DOI:10.1016/j.pdpdt.2016.08.001] [PMID]
5. [5] C. Rivera, "Essentials of oral cancer," Int J Clin Exp Pathol, vol. 8, no. 9, p. 11884, 2015.
6. [6] B. Eckes, F. Wang, P. Moinzadeh, N. Hunzelmann, and T. Krieg, "Pathophysiological mechanisms in sclerosing skin diseases," Front Med (Lausanne), vol. 4, p. 120, 2017. [DOI:10.3389/fmed.2017.00120] [PMID] []
7. [7] D. Singh, A. K. S. Parihar, S. Patel, S. Srivastava, P. Diwan, and M. R. Singh, "Scleroderma: an insight into causes, pathogenesis and treatment strategies," Pathophysiology, vol. 26, no. 2, pp. 103-114, 2019. [DOI:10.1016/j.pathophys.2019.05.003] [PMID]
8. [8] C. P. Denton and D. Khanna, "Systemic sclerosis," The Lancet, vol. 390, no. 10103, pp. 1685-1699, Oct. 2017, doi: 10.1016/S0140-6736(17)30933-9. [DOI:10.1016/S0140-6736(17)30933-9] [PMID]
9. [9] O. Distler and A. Cozzio, "Systemic sclerosis and localized scleroderma-current concepts and novel targets for therapy," Semin Immunopathol, vol. 38, no. 1, pp. 87-95, Jan. 2016, doi: 10.1007/s00281-015-0551-z. [DOI:10.1007/s00281-015-0551-z] [PMID]
10. [10] I. Bielsa Marsol, "Update on the classification and treatment of localized scleroderma," Actas Dermosifiliogr, vol. 104, no. 8, pp. 654-666, 2013, doi: 10.1016/j.adengl.2012.10.012. [DOI:10.1016/j.adengl.2012.10.012] [PMID]
11. [11] A. Levine, D. Siegel, and O. Markowitz, "Imaging in cutaneous surgery," Nov. 01, 2017, Future Medicine Ltd. doi: 10.2217/fon-2017-0277. [DOI:10.2217/fon-2017-0277] [PMID]
12. [12] L. Zhang, M. Li, Y. Liu, and Q. Zhou, "Combining optical coherence tomography with magnetic resonance angiography and Doppler ultrasonography for clinical detection of scleroderma," Anat Rec, vol. 303, no. 12, pp. 3108-3116, 2020. [DOI:10.1002/ar.24340] [PMID]
13. [13] S. Florez-Pollack, E. Kunzler, and H. T. Jacobe, "Morphea: Current concepts," Clin Dermatol, vol. 36, no. 4, pp. 475-486, Jul. 2018, doi: 10.1016/j.clindermatol.2018.04.005. [DOI:10.1016/j.clindermatol.2018.04.005] [PMID]
14. [14] X. Lin, N. Wan, L. Weng, and Y. Zhou, "Angular-dependent light scattering from cancer cells in different phases of the cell cycle," Appl Opt, vol. 56, no. 29, p. 8154, Oct. 2017, doi: 10.1364/ao.56.008154. [DOI:10.1364/AO.56.008154] [PMID]
15. [15] L. G. Henyey and J. L. Greenstein, "DIFFUSE RADIATION IN THE GALAXY," American Astronomical Society, 1941. [DOI:10.1086/144246]
16. [16] E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J Biomed Opt, vol. 11, no. 6, p. 64026, 2006. [DOI:10.1117/1.2398928] [PMID]
17. [17] A. J. Welch and M. J. C. Van Gemert, Optical-thermal response of laser-irradiated tissue, vol. 2. Springer, 2011. [DOI:10.1007/978-90-481-8831-4]
18. [18] "Paras N. Prasad-Introduction to Biophotonics-Wiley-Interscience (2003)". [DOI:10.1002/0471465380]
19. [19] G. Keiser and G. Keiser, "Light-tissue interactions," Biophotonics: Concepts to applications, pp. 147-196, 2016. [DOI:10.1007/978-981-10-0945-7_6]
20. [20] M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," 1998. [DOI:10.1364/AO.37.007410] [PMID]
21. [21] A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, "Optical properties of skin, subcutaneous, and muscle tissues: A review," J Innov Opt Health Sci, vol. 4, no. 1, pp. 9-38, Jan. 2011, doi: 10.1142/S1793545811001319. [DOI:10.1142/S1793545811001319]
22. [22] S. L. Jacques and N. J. McCormick, "Two-term scattering phase function for photon transport to model subdiffuse reflectance in superficial tissues," Biomed Opt Express, vol. 14, no. 2, p. 751, Feb. 2023, doi: 10.1364/boe.476461. [DOI:10.1364/BOE.476461] [PMID] []
23. [23] Y. Liang, C. Niu, C. Wei, S. Ren, W. Cong, and G. Wang, "Phase function estimation from a diffuse optical image via deep learning," Phys Med Biol, vol. 67, no. 7, Apr. 2022, doi: 10.1088/1361-6560/ac5b21. [DOI:10.1088/1361-6560/ac5b21] [PMID] []
24. [24] L. Waszczuk, J. Ogien, F. Pain, and A. Dubois, "Determination of scattering coefficient and scattering anisotropy factor of tissue-mimicking phantoms using line-field confocal optical coherence tomography (LC-OCT)," Journal of the European Optical Society-Rapid Publications, vol. 19, no. 2, Nov. 2023, doi: 10.1051/jeos/2023037. [DOI:10.1051/jeos/2023037]
25. [25] T. Witke, E. Kuhn, F. Teichert, C. Goßler, U. T. Schwarz, and A. Thränhardt, "Angle-dependent light scattering in tissue phantoms for the case of thin bone layers with predominant forward scattering," J Biophotonics, vol. 17, no. 3, Mar. 2024, doi: 10.1002/jbio.202300358. [DOI:10.1002/jbio.202300358] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.