logo
Volume 8, Issue 2 (Autumn and Winter 2023 2024)                   JMRPh 2024, 8(2): 1-14 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Razmpoosh M, Namdar A, Abdi Galeh R. Design of optical biosensor based on two-dimensional dichalcogenide material WS2. JMRPh 2024; 8 (2) :1-14
URL: http://jmrph.khu.ac.ir/article-1-234-en.html
Tabriz University
Abstract:   (144 Views)
Surface plasmon resonance (SPR) biosensors have wide applications in the detection and analysis of biomolecules and biochemicals. Here, an SPR biosensor using 2D dichalcogenide WS2 material deposited on Ag and Ni metal layers was presented to detect ambient analyte concentration. This SPR biosensor works based on the principle of total reflection reduction. The thickness of the silver and nickel metal layers are considered to be 31 nm and 4 nm, respectively, and the thickness of the two-dimensional material WS2 can be changed and varies between 1 and 2 layers. By using a WS2 layer, the sensor sensitivity was obtained as high as 400.28 degrees per refractive index unit (RIU) and also for this sample, the performance index FOM=61.87 (/RIU) was obtained. Also, the refractive index of the sensor medium ranges from 1.33 to 1.335.
Full-Text [PDF 1666 kb]   (87 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/03/8 | Accepted: 2024/11/30 | Published: 2024/02/29

References
1. [1] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and Nuclei, vol. 216, pp. 398-410, 1968. [DOI:10.1007/BF01391532]
2. [2] E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968. [DOI:10.1515/zna-1968-1247]
3. [3] H. Ahn, H. Song, J. R. Choi, and K. Kim, "A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches," Sensors, vol. 18, no. 1, p. 98, 2017. [DOI:10.3390/s18010098] [PMID] []
4. [4] S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications," Chemical Society Reviews, vol. 43, pp. 3426-3452, 2014. [DOI:10.1039/c3cs60479a] [PMID]
5. [5] S. Zeng et al., "Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing," Advanced Materials, vol. 27, pp. 6163-6169, 2015. [DOI:10.1002/adma.201501754] [PMID]
6. [6] G. Wang, C. Wang, R. Yang, W. Liu, and S. Sun, "A sensitive and stable surface plasmon resonance sensor based on monolayer protected silver film," Sensors, vol. 17, no. 10, p. 2777, 2017. [DOI:10.3390/s17122777] [PMID] []
7. [7] J. Liao, L. Han, and C. Xu, "Comparison of the sensitivity by SPR in a metal-ITO-BlueP/TMDC structure," Applied Optics, vol. 60, pp. 5161-5168, 2021. [DOI:10.1364/AO.425903] [PMID]
8. [8] Z. Yang, L. Xia, S. Li, R. Qi, X. Chen, and W. Li, "Highly sensitive refractive index detection based on compact HSC-SPR structure in a microfluidic chip," Sensors and Actuators A: Physical, vol. 297, p. 111558, 2019. [DOI:10.1016/j.sna.2019.111558]
9. [9] M. M. Rahman, M. M. Rana, M. S. Rahman, M. S. Anower, M. A. Mollah, and A. K. Paul, "Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials," Optical Materials, vol. 107, p. 110123, 2020. [DOI:10.1016/j.optmat.2020.110123]
10. [10] Y. Dai, H. Xu, H. Wang, Y. Lu, and P. Wang, "Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing," Optics Communications, vol. 416, pp. 66-70, 2018. [DOI:10.1016/j.optcom.2018.02.010]
11. [11] A. K. Mishra and S. K. Mishra, "Gas sensing in Kretschmann configuration utilizing bi-metallic layer of Rhodium-Silver in visible region," Sensors and Actuators B: Chemical, vol. 237, pp. 969-973, 2016. [DOI:10.1016/j.snb.2016.07.041]
12. [12] H. Yu, Y. Peng, Y. Yang, and Z. Y. Li, "Plasmon-enhanced light-matter interactions and applications," npj Computational Materials, vol. 5, p. 45, 2019. [DOI:10.1038/s41524-019-0184-1]
13. [13] S. W. Kowalczyk, M. W. Tuijtel, S. P. Donkers, and C. Dekker, "Unraveling single-stranded DNA in a solid-state nanopore," Nano Letters, vol. 10, pp. 1414-1420, 2010. [DOI:10.1021/nl100271c] [PMID]
14. [14] R. K. A. Rikta, M. S. Anower, M. S. Rahman, and M. M. Rahman, "SPR biosensor using SnSe-phosphorene heterostructure," Sensing and Bio-Sensing Research, vol. 33, p. 100442, 2021. [DOI:10.1016/j.sbsr.2021.100442]
15. [15] G. AlaguVibisha, J. K. Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K. B. Rajesh, and R. Jha, "Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu-Ni," Optics Communications, vol. 463, p. 125337, 2020. [DOI:10.1016/j.optcom.2020.125337]
16. [16] X. Lu, M. I. B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S. T. Pantelides, J. Wang, Z. Dong, Z. Liu, and W. Zhou, "Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates," Nano Lett., vol. 14, pp. 2419-2425, 2014. [DOI:10.1021/nl5000906] [PMID]
17. [17] J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, "Electrical control of neutral and charged excitons in a monolayer semiconductor," Nat. Commun., vol. 4, p. 1474, 2013. [DOI:10.1038/ncomms2498] [PMID]
18. [18] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, "Single-layer MoS2 phototransistors," ACS Nano, vol. 6, pp. 74-80, 2012. [DOI:10.1021/nn2024557] [PMID]
19. [19] W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim, "High‐detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared," Adv. Mater., vol. 24, pp. 5832-5836, 2012. [DOI:10.1002/adma.201201909] [PMID]
20. [20] H. M. Li, D. Y. Lee, M. S. Choi, D. Qu, X. Liu, C. H. Ra, W. J. Yoo, "Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors," Sci. Rep., vol. 4, p. 4041, 2014. [DOI:10.1038/srep04041] [PMID] []
21. [21] B. Radisavljevic and A. Kis, "Mobility engineering and a metal-insulator transition in monolayer MoS2," Nat. Mater., vol. 12, pp. 815-820, 2013. [DOI:10.1038/nmat3687] [PMID]
22. [22] T. Srivastava and R. Jha, "Black phosphorus: a new platform for gaseous sensing based on surface plasmon resonance," IEEE Photon. Technol. Lett., vol. 30, pp. 319-322, 2018. [DOI:10.1109/LPT.2017.2787057]
23. [23] M. Donarelli and L. Ottaviano, "2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene," Sensors, vol. 18, p. 3638, 2018. [DOI:10.3390/s18113638] [PMID] []
24. [24] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 699-712, 2012. [DOI:10.1038/nnano.2012.193] [PMID]
25. [25] Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X. Q. Dinh, J. Qian, S. He, Q. J., P. Coquet, and K. T. Yong, "Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor," Sci. Rep., vol. 6, p. 28190, 2016. [DOI:10.1038/srep28190] [PMID] []
26. [26] L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, "Highly sensitive graphene biosensors based on surface plasmon resonance," Opt. Express, vol. 18, pp. 14395-14400, 2010. [DOI:10.1364/OE.18.014395] [PMID]
27. [27] B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sensors Actuators B Chem., vol. 107, pp. 40-46, 2005. [DOI:10.1016/j.snb.2004.08.030]
28. [28] K. V. Sreekanth, K. H. Krishna, A. De Luca, and G. Strangi, "Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials," Sci. Rep., vol. 4, p. 6340, 2014. [DOI:10.1038/srep06340] [PMID] []
29. [29] K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, "Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal," Sensors Actuators B Chem., vol. 182, pp. 424-428, 2013. [DOI:10.1016/j.snb.2013.03.039]
30. [30] A. Verma, A. Prakash, and R. Tripathi, "Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria," Opt. Quantum Electron., vol. 47, pp. 1197-1205, 2015. [DOI:10.1007/s11082-014-9976-1]
31. [31] M. B. Hossain and M. M. Rana, "Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization," Sensor Lett., vol. 14, pp. 145-152, 2016. [DOI:10.1166/sl.2016.3596]
32. [32] T. B. A. Akib, S. Mostufa, M. M. Rana, M. B. Hossain, M. R. Islam, "A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2," Opt. Quantum Electron., vol. 55, p. 448, 2023. [DOI:10.1007/s11082-023-04700-4] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.