logo
دوره 8، شماره 2 - ( پاییز و زمستان 1402 )                   جلد 8 شماره 2 صفحات 14-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Razmpoosh M, Namdar A, Abdi Galeh R. Design of optical biosensor based on two-dimensional dichalcogenide material WS2. JMRPh 2024; 8 (2) :1-14
URL: http://jmrph.khu.ac.ir/article-1-234-fa.html
رزم پوش میلاد، نامدار عبدالرحمن، عبدی قلعه رضا. طراحی بیوسنسور نوری بر پایه ماده دو بعدی دی کالکوژناید WS2. نشریه پژوهش های نوین فیزیک. 1402; 8 (2) :1-14

URL: http://jmrph.khu.ac.ir/article-1-234-fa.html


دانشگاه تبریز
چکیده:   (128 مشاهده)
بیوسنسورهای رزونانس پلاسمون سطحی (SPR) در تشخیص و تحلیل بیومولکول‌ها و بیوشیمیایی‌ها کاربردهای گسترده‌ای دارند. در اینجا، یک بیوسنسور SPR با استفاده از ماده دو بعدی دی کالکوژناید WS2 که روی لایه‌های فلزی Ag و Ni قرار گرفته است، ارائه شد تا غلظت آنالیت محیط تشخیص داده شود. این بیوسنسور SPR بر اساس اصل کاهش بازتاب کلی عمل می‌کند. ضخامت لایه‌های فلزی نقره و نیکل به ترتیب 31 نانومتر و 4 نانومتر در نظر گرفته شده‌اند و ضخامت ماده دو بعدی WS2 قابل تغییر است و بین 1 تا 2 لایه متغیر است. با استفاده از یک لایه WS2، حساسیت حسگر به میزان 400.28 درجه بر واحد شاخص شکست (RIU) به دست آمد و همچنین برای این نمونه شاخص عملکرد FOM=61.87 (/RIU) بدست آمد. همچنین، ضریب شکست محیط حسگر در بازه 1.33 تا 1.335 متغیر است.
متن کامل [PDF 1666 kb]   (72 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/12/18 | پذیرش: 1403/9/10 | انتشار: 1402/12/10

فهرست منابع
1. [1] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and Nuclei, vol. 216, pp. 398-410, 1968. [DOI:10.1007/BF01391532]
2. [2] E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968. [DOI:10.1515/zna-1968-1247]
3. [3] H. Ahn, H. Song, J. R. Choi, and K. Kim, "A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches," Sensors, vol. 18, no. 1, p. 98, 2017. [DOI:10.3390/s18010098] [PMID] []
4. [4] S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications," Chemical Society Reviews, vol. 43, pp. 3426-3452, 2014. [DOI:10.1039/c3cs60479a] [PMID]
5. [5] S. Zeng et al., "Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing," Advanced Materials, vol. 27, pp. 6163-6169, 2015. [DOI:10.1002/adma.201501754] [PMID]
6. [6] G. Wang, C. Wang, R. Yang, W. Liu, and S. Sun, "A sensitive and stable surface plasmon resonance sensor based on monolayer protected silver film," Sensors, vol. 17, no. 10, p. 2777, 2017. [DOI:10.3390/s17122777] [PMID] []
7. [7] J. Liao, L. Han, and C. Xu, "Comparison of the sensitivity by SPR in a metal-ITO-BlueP/TMDC structure," Applied Optics, vol. 60, pp. 5161-5168, 2021. [DOI:10.1364/AO.425903] [PMID]
8. [8] Z. Yang, L. Xia, S. Li, R. Qi, X. Chen, and W. Li, "Highly sensitive refractive index detection based on compact HSC-SPR structure in a microfluidic chip," Sensors and Actuators A: Physical, vol. 297, p. 111558, 2019. [DOI:10.1016/j.sna.2019.111558]
9. [9] M. M. Rahman, M. M. Rana, M. S. Rahman, M. S. Anower, M. A. Mollah, and A. K. Paul, "Sensitivity enhancement of SPR biosensors employing heterostructure of PtSe2 and 2D materials," Optical Materials, vol. 107, p. 110123, 2020. [DOI:10.1016/j.optmat.2020.110123]
10. [10] Y. Dai, H. Xu, H. Wang, Y. Lu, and P. Wang, "Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing," Optics Communications, vol. 416, pp. 66-70, 2018. [DOI:10.1016/j.optcom.2018.02.010]
11. [11] A. K. Mishra and S. K. Mishra, "Gas sensing in Kretschmann configuration utilizing bi-metallic layer of Rhodium-Silver in visible region," Sensors and Actuators B: Chemical, vol. 237, pp. 969-973, 2016. [DOI:10.1016/j.snb.2016.07.041]
12. [12] H. Yu, Y. Peng, Y. Yang, and Z. Y. Li, "Plasmon-enhanced light-matter interactions and applications," npj Computational Materials, vol. 5, p. 45, 2019. [DOI:10.1038/s41524-019-0184-1]
13. [13] S. W. Kowalczyk, M. W. Tuijtel, S. P. Donkers, and C. Dekker, "Unraveling single-stranded DNA in a solid-state nanopore," Nano Letters, vol. 10, pp. 1414-1420, 2010. [DOI:10.1021/nl100271c] [PMID]
14. [14] R. K. A. Rikta, M. S. Anower, M. S. Rahman, and M. M. Rahman, "SPR biosensor using SnSe-phosphorene heterostructure," Sensing and Bio-Sensing Research, vol. 33, p. 100442, 2021. [DOI:10.1016/j.sbsr.2021.100442]
15. [15] G. AlaguVibisha, J. K. Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K. B. Rajesh, and R. Jha, "Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu-Ni," Optics Communications, vol. 463, p. 125337, 2020. [DOI:10.1016/j.optcom.2020.125337]
16. [16] X. Lu, M. I. B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S. T. Pantelides, J. Wang, Z. Dong, Z. Liu, and W. Zhou, "Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates," Nano Lett., vol. 14, pp. 2419-2425, 2014. [DOI:10.1021/nl5000906] [PMID]
17. [17] J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, "Electrical control of neutral and charged excitons in a monolayer semiconductor," Nat. Commun., vol. 4, p. 1474, 2013. [DOI:10.1038/ncomms2498] [PMID]
18. [18] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, "Single-layer MoS2 phototransistors," ACS Nano, vol. 6, pp. 74-80, 2012. [DOI:10.1021/nn2024557] [PMID]
19. [19] W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim, "High‐detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared," Adv. Mater., vol. 24, pp. 5832-5836, 2012. [DOI:10.1002/adma.201201909] [PMID]
20. [20] H. M. Li, D. Y. Lee, M. S. Choi, D. Qu, X. Liu, C. H. Ra, W. J. Yoo, "Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors," Sci. Rep., vol. 4, p. 4041, 2014. [DOI:10.1038/srep04041] [PMID] []
21. [21] B. Radisavljevic and A. Kis, "Mobility engineering and a metal-insulator transition in monolayer MoS2," Nat. Mater., vol. 12, pp. 815-820, 2013. [DOI:10.1038/nmat3687] [PMID]
22. [22] T. Srivastava and R. Jha, "Black phosphorus: a new platform for gaseous sensing based on surface plasmon resonance," IEEE Photon. Technol. Lett., vol. 30, pp. 319-322, 2018. [DOI:10.1109/LPT.2017.2787057]
23. [23] M. Donarelli and L. Ottaviano, "2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene," Sensors, vol. 18, p. 3638, 2018. [DOI:10.3390/s18113638] [PMID] []
24. [24] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 699-712, 2012. [DOI:10.1038/nnano.2012.193] [PMID]
25. [25] Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X. Q. Dinh, J. Qian, S. He, Q. J., P. Coquet, and K. T. Yong, "Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor," Sci. Rep., vol. 6, p. 28190, 2016. [DOI:10.1038/srep28190] [PMID] []
26. [26] L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, "Highly sensitive graphene biosensors based on surface plasmon resonance," Opt. Express, vol. 18, pp. 14395-14400, 2010. [DOI:10.1364/OE.18.014395] [PMID]
27. [27] B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sensors Actuators B Chem., vol. 107, pp. 40-46, 2005. [DOI:10.1016/j.snb.2004.08.030]
28. [28] K. V. Sreekanth, K. H. Krishna, A. De Luca, and G. Strangi, "Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials," Sci. Rep., vol. 4, p. 6340, 2014. [DOI:10.1038/srep06340] [PMID] []
29. [29] K. V. Sreekanth, S. Zeng, K. T. Yong, and T. Yu, "Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal," Sensors Actuators B Chem., vol. 182, pp. 424-428, 2013. [DOI:10.1016/j.snb.2013.03.039]
30. [30] A. Verma, A. Prakash, and R. Tripathi, "Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria," Opt. Quantum Electron., vol. 47, pp. 1197-1205, 2015. [DOI:10.1007/s11082-014-9976-1]
31. [31] M. B. Hossain and M. M. Rana, "Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization," Sensor Lett., vol. 14, pp. 145-152, 2016. [DOI:10.1166/sl.2016.3596]
32. [32] T. B. A. Akib, S. Mostufa, M. M. Rana, M. B. Hossain, M. R. Islam, "A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2," Opt. Quantum Electron., vol. 55, p. 448, 2023. [DOI:10.1007/s11082-023-04700-4] [PMID] []

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.