1. [1] X. Yuanhui, G. Faming, H. Xianfeng, L. Zhiping, Electronic structure and magnetism in superconductor ZnNNi3 a comparative study with ZnCNi3 and ZnNi3, Comput. Mater. Sci. Phys 50 (2010) 737. [
DOI:10.1016/j.commatsci.2010.10.004]
2. [2] C. M. I. Okoye, Structural elastic and electronic properties of new antiperovskite-type superconductor ZnNNi3 from first-principles, Physica B 405 (2010) 1562. [
DOI:10.1016/j.physb.2009.12.040]
3. [3] C. Li, W.G. Chen, F. Wang, S.F. Li, Q. Sun, S. Wang, Y. Jia, First-principles study of mechanical stability and thermal properties of MNNi3 (M = Zn, Mg, Al) under pressure, J. Appl. Phys.105 (2009) 123921. [
DOI:10.1063/1.3156641]
4. [4] T. He et al. Superconductivity in the non-oxide perovskite MgCNi3, Nature 54 (2001) 411. [
DOI:10.1038/35075014] [
PMID]
5. [5] M. Sieberer, P.Mohn, G. Redinger, Role of carbon in AlCNi 3 and GaCNi 3: A density functional theory study, Phys. Rev. B 75 (2007) 024431. [
DOI:10.1103/PhysRevB.75.035203]
6. [6] B. He, C. Dong, L. Yang, L. Ge, H. J. Chen, Preparation and physical properties of antiperovskite-type compounds CdNCo3−zNiz (0≤z≤3), Solid State Chem. 184 (2011) 1939. [
DOI:10.1016/j.jssc.2011.05.051]
7. [7] M. Uehara, A. Uehara, K. Kozawa, T. Yamazaki, Y. Kimishima, New antiperovskite superconductor ZnNNi3 and related compounds CdNNi3 and InNNi3, Physica C 470 (2010) S688. [
DOI:10.1016/j.physc.2009.11.131]
8. [8] L. Liu, X. Wu, R. Wang, L. Gan, Q.Wei, Effect of Pressure on Elastic Constants, Generalized Stacking Fault Energy and Dislocation Properties in Antiperovskite-Type Ni-Rich Nitrides ZnNNi3 and CdNNi3, J. Supercond. Nov. Magn, 14 (2014) 2628. [
DOI:10.1007/s10948-014-2628-7]
9. [9] I. R. Shein, V. V. Bannikov, A. L. Ivanovskii, Structural, elastic and electronic properties of superconducting anti-perovskites MgCNi3, ZnCNi3 and CdCNi3 from first principles, Physica C 468 (2008) 1. [
DOI:10.1016/j.physc.2007.08.004]
10. [10] Y. Medkour, A. Roumili, D. Maouche, M. Maamache, First-principles study of the structural, electronic and magnetic properties of InCCo3 and InNCo3, Solid State Commun. 151 (2011) 1916. [
DOI:10.1016/j.ssc.2011.09.023]
11. [11] W. H. Cao, B. He, C. Z. Liao, L. H. Yang, L. M. Zeng, C. Dong, Preparation and properties of antiperovskite-type nitrides InNNi3 and InNCo3, J. Solid State Chem. 182 (2009) 3353. [
DOI:10.1016/j.jssc.2009.10.002]
12. [12] Z. F. Hou, Elastic properties and electronic structures of antiperovskite-type InNCo3 and InNNi3, Solid State Commun. 150 (2010)1874. [
DOI:10.1016/j.ssc.2010.07.047]
13. [13] I. R. Shein, V. V. Bannikov, A. L. Ivanovskii, Elastic and electronic properties of the new perovskite-like superconductor ZnNNi3 in comparison with MgCNi3, Phys. Statas Solidi b 247 (2010) 72. [
DOI:10.1002/pssb.200945216]
14. [14] K. Haddadi, A. Bouhemadou, L. Louail, M. Maamache, Density functional study of the structural, electronic, elastic and thermodynamic properties of ACRu3 (A = V, Nb and Ta) compound, Intermetallics 19 (2009) 476. [
DOI:10.1016/j.intermet.2010.11.002]
15. [15] S. Baroni et. al., http://www.pwscf.org
16. [16] S. Baroni, P. Giannozzi, A. Testa, Green's-function approach to linear response in solids, Phys. Rev. Lett. 58 (1987) 1861. [
DOI:10.1103/PhysRevLett.58.1861] [
PMID]
17. [17] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864. [
DOI:10.1103/PhysRev.136.B864]
18. [18] W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133. [
DOI:10.1103/PhysRev.140.A1133]
19. [19] S. Baroni, S. Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001) 515. [
DOI:10.1103/RevModPhys.73.515]
20. [20] F. D. Murnaghan, The Compressibility Of Media Under Extreme Pressures, Proc. Nat. Acad. Sci. U.S.A 30 (1944) 244. [
DOI:10.1073/pnas.30.9.244] [
PMID] [
]
21. [21] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Let.77 (1996) 3865. [
DOI:10.1103/PhysRevLett.77.3865] [
PMID]
22. [22] M. Born, K. Huang, Dynamical Theory of Crystal Lattices Clarendon, Oxford, 1956.
23. [23] W. Voigt, Macroscopic symmetry and properties of crystals, Lehrbuch der kristallphysik, Taubner Leipzig, 1928.
24. [24] A. Reuss, Z. Angew, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, Math. Mech. 9 (1929) 55.
25. [25] R. Hill, A simplified method for calculating the debye temperature from elastic constants, Proc. Phys. Soc. Lond. 65 (1952) 350.
26. [26] K. Haddadi, A. Bouhemadou, L. Louail, S. Maabed, D. Maouche, Structural and elastic properties under pressure effect of the cubic antiperovskite compounds ANCa3 (A = P, As, Sb, and Bi), Phys. Lett. A 373 (2009) 1777. [
DOI:10.1016/j.physleta.2009.03.016]
27. [27] S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45 (1954) 823. [
DOI:10.1080/14786440808520496]
28. [28] O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963) 909. [
DOI:10.1016/0022-3697(63)90067-2]