1. [1] S. Kapse, B. Benny, P. Mandal, and R. Thapa, "Design principle of MoS2/C heterostructure to enhance the quantum capacitance for supercapacitor application", Journal of Energy Storage, vol. 44, 103476, 2021. [
DOI:10.1016/j.est.2021.103476]
2. [2] K. Himalay, P. N. Gajjar, and Gupta. Sanjeev, "Unraveling quantum capacitance in supercapacitors: Energy storage applications." Journal of Energy Storage, vol. 81, 110354, 2024. [
DOI:10.1016/j.est.2023.110354]
3. [3] Q. Zhou, W. Li, J. Weiwei, S. Dongtao, Z. Juncheng, Y. Yongliang, and W. Shilin Wu. "Quantum capacitance of graphene-like/graphene heterostructures for supercapacitor electrodes". Electrochimica Acta vol. 46, 142655, 2023. [
DOI:10.1016/j.electacta.2023.142655]
4. [4] T. Sanglaow, K. Prasert, C. Chanthad, M. Liangruksa, and T. Sutthibutpong, "A DFT study on the fundamental mechanisms of quantum capacitance enhancement within the carbon-based electrodes through different classes of doped configurations from biomass-derived elements". Results in Materials, vol. 21, 100529 2024. [
DOI:10.1016/j.rinma.2024.100529]
5. [5] Q. Zhou, J. W, Y. Yong, Q. Zhang, Y. Liu, and J. Li, "Effect of the N/P/S and transition-metal co-doping on the quantum capacitance of supercapacitor electrodes based on mono-and multilayer graphene". Carbon, vol. 170, 368, 2020. [
DOI:10.1016/j.carbon.2020.08.045]
6. [6] G.M. Yang, H.Z. Zhang, X.F. Fan, and W.T. Zheng, "Density functional theory calculations for the quantum capacitance performance of graphene-based electrode material". The Journal of Physical Chemistry C, vol. 119, 6464, 2015. [
DOI:10.1021/jp512176r]
7. [7] Z. Bo, W. Wen, Y. Chen, X. Guo, H. Yang, J. Yan, K. Cen, and Z. Liu, "Effect of nitrogen and transition-metal co-doping on quantum capacitance enhancement of graphene as supercapacitor electrodes: A density functional theory study". Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 680, 132686, 2024. [
DOI:10.1016/j.colsurfa.2023.132686]
8. [8] X.H. Li, S.S. Li, X.H. Cui, R.Z. Zhang, and H.L. Cui, "First-principle study of electronic properties and quantum capacitance of lithium adsorption on pristine and vacancy-defected O-functionalized Ti2C MXene". Applied Surface Science, vol. 563, 150264, 2021. [
DOI:10.1016/j.apsusc.2021.150264]
9. [9] G.S. Kliros, "Strain effects on the quantum capacitance of graphene nanoribbon devices". Applied Surface Science, vol. 502, 144292, 2020. [
DOI:10.1016/j.apsusc.2019.144292]
10. [10] C. Di Giorgio, and et al, "Imaging the Quantum Capacitance of Strained MoS2 Monolayers by Electrostatic Force Microscopy". ACS nano, vol. 18, 3405, 2024. [
DOI:10.1021/acsnano.3c10393]
11. [11] M.K. Bera, "Analytical Modeling of Current and Quantum Capacitance of Single-Electron Transistor with Island Made of Armchair WSe2 Nanoribbon". Journal of Electronic Materials, vol. 49, 7400, 2020. [
DOI:10.1007/s11664-020-08511-1]
12. [12] M. Beshkova, and R. Yakimova, "Properties and potential applications of two-dimensional AlN". Vacuum, vol.176, 109231, 2020. [
DOI:10.1016/j.vacuum.2020.109231]
13. [13] P. Giannozzi, O. et.al, J.Phys.: Condens.Matter 29 (2017) 465901. [
DOI:10.1088/1361-648X/aa8f79]
14. [14] J.P. Perdew, K. Burke, M.s Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865. [
DOI:10.1103/PhysRevLett.77.3865]
15. [15] A. Tiwari, G. Bansal, S.J. Mukhopadhyay, A. Bhattacharjee, and S. Kanungo, "Quantum capacitance engineering in boron and carbon modified monolayer phosphorene electrodes for supercapacitor application: a theoretical approach using ab-initio calculation". Journal of Energy Storage, vol. 73, 109040, 2023. [
DOI:10.1016/j.est.2023.109040]