logo
Volume 9, Issue 2 (Autumn and Winter 2024 2025)                   JMRPh 2025, 9(2): 1-14 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Razmpoosh M, Abedi Ravan B. Design of ZnS/Ag/ZnS/Ag/ZnS Sandwich Shape Transparent Conductive Thin Electrode on PET Substrate. JMRPh 2025; 9 (2) :1-14
URL: http://jmrph.khu.ac.ir/article-1-249-en.html
Tabriz University
Abstract:   (43 Views)
In this research, a nanostructured multilayer transparent conductive system, ZnS/Ag/ZnS/Ag/ZnS, was designed and simulated on a polyethylene terephthalate (PET) substrate using Essential Macleod software. The primary objective of this design was to enhance and optimize both the optical transmittance and electrical resistance properties. To achieve this, the optimal thickness of each layer was calculated to simultaneously provide high optical transmittance and low electrical resistance. Utilizing Essential Macleod software and simulation analysis, the optimal thickness for each layer was precisely determined. This design and optimization method for the ZnS/Ag/ZnS/Ag/ZnS structure facilitates the efficient use of this structure in various optoelectronic applications. Certain electrical and optical properties of the ZnS/Ag/ZnS/Ag/ZnS multilayer system were investigated. The measured properties included sheet resistance, optical transmittance, and reflectance. The ZnS/Ag/ZnS/Ag/ZnS multilayer structure yielded the best results when the thickness of the silver layers was 10 nm and the thickness of the ZnS layers was 30 nm. Under these conditions, the figure of merit, FTC, was 0.0745 Ω⁻¹, which is the maximum value and indicates the best performance of the structure. Furthermore, a low sheet resistance of approximately 6.328 Ω/sq and a transmittance of 92.75% in the visible region were achieved. The low electrical resistance and high transmittance make this structure suitable as a transparent conductive electrode in optoelectronic applications.
 
Full-Text [PDF 1748 kb]   (16 Downloads)    
Type of Study: Research | Subject: Special
Received: 2025/01/7 | Accepted: 2025/03/16 | Published: 2025/04/5 | ePublished: 2025/04/5

References
1. [1] Wager, J.F, Transparent electronics. science, 300(5623), pp.1245-1246, (2003). [DOI:10.1126/science.1085276] [PMID]
2. [2] Habis, C., Zaraket, J., & Aillerie, M.. Transparent Conductive Oxides. Part I. General Review of Structural, Electrical and Optical Properties of TCOs Related to the Growth Techniques, Materials and Dopants. In Defect and Diffusion Forum (Vol. 417, pp. 243-256). Trans Tech Publications Ltd. (2022, July). [DOI:10.4028/p-97c472]
3. [3] Chavan, G. T., Kim, Y., Khokhar, M. Q., Hussain, S. Q., Cho, E. C., Yi, J., ... & Jeon, C. W. A brief review of transparent conducting oxides (TCO): the influence of different deposition techniques on the efficiency of solar cells. Nanomaterials, 13(7), 1226. (2023). [DOI:10.3390/nano13071226] [PMID] []
4. [4] Razmpoosh, M., Abedi Ravan, B. (2024). 'Designing and improving the performance of a transparent conductive electrode using a TiO2/Ag/ZnS/Ag/TiO2 mirror-shaped multilayer nano structure.', Nanoscale, 11(2), pp. 75-61.
5. [5] Angmo, D., Krebs, F.C., 2013. Flexible ITO‐free polymer solar cells. Journal of Applied Polymer Science, 129(1), pp.1-14. [DOI:10.1002/app.38854]
6. [6] Lu, X., Zhang, Y., & Zheng, Z.. Metal‐based flexible transparent electrodes: challenges and recent advances. Advanced Electronic Materials, 7(5), 2001121, (2021). [DOI:10.1002/aelm.202001121]
7. [7] Zilberberg, K., Gasse, F., Pagui, R., Polywka, A., Behrendt, A., Trost, S., Heiderhoff, R., Gorrn, P., Riedl, T., Highly robust indium‐free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Advanced Functional Materials, 24(12), pp.1671-1678, (2014). [DOI:10.1002/adfm.201303108]
8. [8] Khuili, M., Fazouan, N., Abou El Makarim, H., El Halani, G., Atmani, E.H., Comparative first principles study of ZnO doped with group III elements. Journal of Alloys and Compounds, 688, pp.368-375, (2016). [DOI:10.1016/j.jallcom.2016.06.294]
9. [9] Zhang, D., Yu, W., Zhang, L., & Hao, X. (2023). Progress in the synthesis and application of transparent conducting film of AZO (ZnO: Al). Materials, 16(16), 5537. [DOI:10.3390/ma16165537] [PMID] []
10. [10] Mahmood, K., Park, S.B., Atmospheric pressure based electrostatic spray deposition of transparent conductive ZnO and Al-doped ZnO (AZO) thin films: Effects of Al doping and annealing treatment. Electronic Materials Letters, 9, pp.161-170, (2013). [DOI:10.1007/s13391-012-2188-6]
11. [11] Das, H. S., Das, D. K., Maity, S. K., Khatua, D., Gupta, G. K., Jalgham, R. T., ... & Roymahapatra, G. Analysis of the influence of the thickness of transparent conducting oxide (GZO) with Ga-doping and its use as anode materials in organic light-emitting diodes. ES Energy & Environment, 25, 1239, (2024).
12. [12] Ginley, D.S., Perkins, J.D., Transparent conductors. In Handbook of transparent conductors (pp. 1-25). Boston, MA: Springer US, (2010). [DOI:10.1007/978-1-4419-1638-9_1]
13. [13] Haidari, G. Nano-viewpoint in modeling and investigation of the D/M/D transparent-conductive layer. Plasmonics, 17(1), 249-255, (2022). [DOI:10.1007/s11468-021-01523-5]
14. [14] Cattin, L., Louarn, G., Morsli, M., & Bernède, J. C. Semi-transparent organic photovoltaic cells with dielectric/metal/dielectric top electrode: influence of the metal on their performances. Nanomaterials, 11(2), 393, (2021). [DOI:10.3390/nano11020393] [PMID] []
15. [15] Wang, C., & Xing, Z. Preparation and characterization of ZnS/metal/ZnS transparent conductive multilayer films with different metal layers. Journal of Modern Optics, 71(4-6), 177-183, (2024). [DOI:10.1080/09500340.2024.2401075]
16. [16] Loka, C., Lee, K.S., Preparation of TiO2/Ag/TiO2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film. Applied Surface Science, 415, pp.35-42, (2017). [DOI:10.1016/j.apsusc.2016.11.082]
17. [17] Lee, C.H., Pandey, R., Wang, B.Y., Choi, W.K., Choi, D.K., Oh, Y.J., Nano-sized indium-free MTO/Ag/MTO transparent conducting electrode prepared by RF sputtering at room temperature for organic photovoltaic cells. Solar Energy Materials and Solar Cells, 132, pp.80-85, (2015). [DOI:10.1016/j.solmat.2014.08.025]
18. [18] Yu, S., Li, L., Lyu, X., Zhang, W., Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Scientific reports, 6(1), p.20399 , (2016). [DOI:10.1038/srep20399] [PMID] []
19. [19] Oh, I.S., Ji, C.H., Oh, S.Y., Effects of ytterbium on electrical and optical properties of BCP/Ag/WO 3 transparent electrode based organic photovoltaic cells. Electronic Materials Letters, 12, pp.156-162, (2016). [DOI:10.1007/s13391-015-5297-1]
20. [20] Bright, C.I., Review of transparent conductive oxides (TCO). Mattox D, editor, 50, (2007).
21. [21] Zhou, C., Xi, Z., Stacchiola, D. J., & Liu, M. Application of ultrathin TiO2 layers in solar energy conversion devices. Energy Science & Engineering, 10(5), 1614-1629. (2022). [DOI:10.1002/ese3.1142]
22. [22] Vyas, S., Tiwary, R., Shubham, K., Chakrabarti, P., Study the target effect on the structural, surface and optical properties of TiO2 thin film fabricated by RF sputtering method. Superlattices and Microstructures, 80, pp.215-221, (2015). [DOI:10.1016/j.spmi.2014.10.029]
23. [23] Campbell, C.T., Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surface science reports, 27(1-3), pp.1-111, (1997). [DOI:10.1016/S0167-5729(96)00011-8]
24. [24] Formica, N., Ghosh, D.S., Carrilero, A., Chen, T.L., Simpson, R.E., Pruneri, V., Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS applied materials & interfaces, 5(8), pp.3048-3053, (2013). [DOI:10.1021/am303147w] [PMID]
25. [25] Jang, B., Kim, J., Lee, J., Park, G., Yang, G., Jang, J., & Kwon, H. J. Combustion-assisted low-temperature ZrO2/SnO2 films for high-performance flexible thin film transistors. npj Flexible Electronics, 8(1), 74, (2024). [DOI:10.1038/s41528-024-00362-8]
26. [26] Beckford, J., Behera, M. K., Yarbrough, K., Obasogie, B., Pradhan, S. K., & Bahoura, M. Gallium doped zinc oxide thin films as transparent conducting oxide for thin-film heaters. AIP Advances, 11(7), (2021). [DOI:10.1063/5.0016367]
27. [27] Zhao, P., Su, W., Wang, R., Xu, X., Zhang, F., Properties of thin silver films with different thickness. Physica E: Low-dimensional Systems and Nanostructures, 41(3), pp.387-390, (2009). [DOI:10.1016/j.physe.2008.08.062]
28. [28] Liu, X., Cai, X., Qiao, J., Mao, J., Jiang, N., The design of ZnS/Ag/ZnS transparent conductive multilayer films. Thin Solid Films, 441(1-2), pp.200-206, (2003). [DOI:10.1016/S0040-6090(03)00141-X]
29. [29] Haacke, G., New figure of merit for transparent conductors. Journal of Applied physics, 47(9), pp.4086-4089, (1976). [DOI:10.1063/1.323240]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.