1. [1] P.S. Dorozhkin, S.V. Tovstonog, D. Golberg, J. Zhan, Y. Ishikawa, M. Shiozawa, H. Nakanishi, K. Nakata, Y. Bando, A liquid Ga-filled carbon nanotube: a miniaturized temperature sensor and electrical switch, Small 1, 1088-1093, 2005. [
DOI:10.1002/smll.200500154] [
PMID]
2. [2] S. Wang, S. Westcott, W. Chen, Nanoparticle luminescence thermometry, J. Phys. Chem. B 106, 11203-11209, 2002. [
DOI:10.1021/jp026445m]
3. [3] S.A. Wade, S.F. Collins, G.W. Baxter, Fluorescence intensity ratio technique for optical fiber point temperature sensing, J. Appl. Phys. 94, 4743-4756, 2003. [
DOI:10.1063/1.1606526]
4. [4] Y. Gao, Y. Bando, Carbon nanothermometer containing gallium, Nature 415, 599-600, 2002. [
DOI:10.1038/415599a] [
PMID]
5. [5] G.W. Walker, V.C. Sundar, C.M. Rudzinski, M.G. WunBawendi, D.G. Nocera, Quantum-dot optical temperature probes, Appl. Phys. Lett. 83, 3555-3557, 2003. [
DOI:10.1063/1.1620686]
6. [6] J. Lee, N.A. Kotov, Thermometer design at the nanoscale, Nano Today 2, 48-51, 2007. [
DOI:10.1016/S1748-0132(07)70019-1]
7. [7] L. Aigouy, G. Tessier, M. Mortier, B. Charlot, Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe, Appl. Phys. Lett. 87, 184105-1-184105-3, 2005. [
DOI:10.1063/1.2123384]
8. [8] M.A.R.C. Alencar, G.S. Maciel, C.B. De Arau' Jo, A. Patra, Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescencebased temperature sensor, Appl. Phys. Lett. 84, 4753-4755, 2004. [
DOI:10.1063/1.1760882]
9. [9] S.V. Yap, R.M. Ranson, W.M. Cranton, D. Koutsogeorgis, Decay time characteristics of La2O2S: Eu and La2O2S: Tb for use within an optical sensor for human skin temperature measurement, Appl. Opt. 47, 4895-4899, 2008. [
DOI:10.1364/AO.47.004895] [
PMID]
10. [10] L.H. Fischer, G.S. Harms, O.S. Wolfbeis, Upconverting nanoparticles for nanoscale thermometry, Angew. Chem. Int. Ed. 50, 4546-4551, 2011. [
DOI:10.1002/anie.201006835] [
PMID]
11. [11] C. AltaVilla, Upconverting Nanomaterials, Perspectives, Synthesis and Application, CRC Press, Taylor & Francis, Boca Raton: New York, 2017.
12. [12] DU, Kaimin, et al. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. Light: Science & Applications, 11.1: 222, 2022. [
DOI:10.1038/s41377-022-00871-z] [
PMID] [
]
13. [13] F. Auzel, Compteur quantiquepar transfert d'energie ' entre deux ions de terres rares dans un tungstate mixte et dans un verre, Comptesrendusdel'AcademiedesSciences, ' Ser.B 262, 1016-1019, 1966.
14. [14] V.V. Ovsyankin, P.P. Feofilov, Mechanism of summation of electronic excitations in activated crystals, JETP Lett. 3, 322-323, 1966.
15. [15] Habibi, et al, 3D printed optofluidic biosensor: NaYF4: Yb3+, Er3+ upconversion nano-emitters for temperature sensing. ''Sensors and Actuators A: Physical, 326, 112734.'' 2021. [
DOI:10.1016/j.sna.2021.112734]
16. [16] F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids, Chem. Rev. 104, 139-173, 2004. [
DOI:10.1021/cr020357g] [
PMID]
17. [17] Liu, Xiaogang, Chun-Hua Yan, and John A. Capobianco. "Photon upconversion nanomaterials." Chemical Society Reviews 44.6, 1299-1301, 2004. [
DOI:10.1039/C5CS90009C] [
PMID]
18. [18] Dramićanin, Miroslav. '' Luminescence thermometry: methods, materials, and applications'' Woodhead Publishing, 2018.
19. [19] Mazetyte-Stasinskiene, Raminta, and Johann Michael Köhler. "Sensor micro and nanoparticles for microfluidic application." Applied Sciences 10.23: 8353, 2020. [
DOI:10.3390/app10238353]
20. [20] Lei, Pengpeng, Jing Feng, and Hongjie Zhang. "Emerging biomaterials: taking full advantage of the intrinsic properties of rare earth elements." Nano Today 35: 100952, 2020.
https://doi.org/10.1039/D0BM01579B
https://doi.org/10.1016/j.biomaterials.2020.120336
https://doi.org/10.1016/j.biomaterials.2020.120340
https://doi.org/10.1016/j.biomaterials.2020.120338
https://doi.org/10.1016/j.biomaterials.2020.120402
https://doi.org/10.1039/D0BM01296C
https://doi.org/10.1039/D0BM01467B
https://doi.org/10.1039/D0BM01531H
https://doi.org/10.1039/D0BM01660H
https://doi.org/10.1039/D0BM00867B
https://doi.org/10.1039/D0BM01168A
https://doi.org/10.1039/D0BM01290D
https://doi.org/10.1039/D0BM01237H
https://doi.org/10.1039/D0BM01385D [
DOI:10.1039/D0BM01076F] [
PMID]
21. [21] Haase, Markus, and Helmut Schäfer. "Upconverting nanoparticles." Angewandte Chemie International Edition 50.26: 5808-5829, 2011. [
DOI:10.1002/anie.201005159] [
PMID]
22. [22] Auzel, François. "Upconversion and anti-stokes processes with f and d ions in solids." Chemical reviews 104.1: 139-174, 2004. [
DOI:10.1021/cr020357g] [
PMID]
23. [23] Wang, Yong, et al. "Construction of multifunctional lanthanide-based nanoparticles Ba2LuF7: Yb/Er/Ho for in vivo dual-modal tumor imaging." Optical Materials 128: 112369, 2022. [
DOI:10.1016/j.optmat.2022.112369]
24. [24] Zhang, Fan. Photon upconversion nanomaterials. Berlin: Springer, Vol. 416, 2015. [
DOI:10.1007/978-3-662-45597-5]
25. [25] S. Sivakaminathan, B. Hankamer, J. Wolf, J. Yarnold, High-throughput optimisation of light-driven microalgae biotechnologies, Sci. Rep. 8 ,11687, 2018. [
DOI:10.1038/s41598-018-29954-x] [
PMID] [
]
26. [26] X. Wang, K. Bao, W. Cao, Y. Zhao, C. Wei Hu, Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology, Sci. Rep. 7, 5426, 2017.
https://doi.org/10.1038/s41598-017-17657-8
https://doi.org/10.1038/s41598-017-17860-7
https://doi.org/10.1038/s41598-017-05841-9
https://doi.org/10.1038/s41598-017-18028-z
https://doi.org/10.1038/s41598-017-18281-2
https://doi.org/10.1038/s41598-017-18302-0
https://doi.org/10.1038/s41598-017-18469-6
https://doi.org/10.1038/s41598-017-18231-y
https://doi.org/10.1038/s41598-017-17965-z
https://doi.org/10.1038/s41598-017-18319-5
https://doi.org/10.1038/s41598-017-17748-6
https://doi.org/10.1038/s41598-017-17894-x
https://doi.org/10.1038/s41598-017-17433-8
https://doi.org/10.1038/s41598-017-17945-3
https://doi.org/10.1038/s41598-017-18244-7 [
DOI:10.1038/srep43625]
27. [27] F. Vanden Bussche, A.M. Kaczmarek, J. Schmidt, C.V. Stevens, P. Van Der Voort, Lanthanide grafted phenanthroline-polymer for physiological temperature range sensing, J. Mater. Chem. 35, 10972-10980, 2029. [
DOI:10.1039/C9TC02328C]
28. [28] S. Wang, J. Jiang, Y. Lu, J. Liu, X. Han, D. Zhao, G. Li, Ratiometric fluorescence temperature sensing based on single- and dual-lanthanide metal-organic frameworks, J. Lumin. 226, 117418-1147425, 2020. [
DOI:10.1016/j.jlumin.2020.117418]
29. [29] T. Chuasaard, A. Ngamjarurojana, S. Surinwong, T. Konno, S. Bureekaew, A. Rujiwatra, Lanthanide coordination polymers of mixed phthalate/adipate for ratiometric temperature sensing in the upper-intermediate temperature range, Inorg. Chem. 5, 2620-2630, 2018. [
DOI:10.1021/acs.inorgchem.7b03016] [
PMID]
30. [30] Getu, Mesfin, et al. "Techno-economic analysis of potential natural gas liquid (NGL) recovery processes under variations of feed compositions." Chemical Engineering Research and Design 91.7: 1272-1283, 2013. [
DOI:10.1016/j.cherd.2013.01.015]
31. [31] https://www.investopedia.com/terms/n/natural-gas-liquids.asp
32. [32] Wilhelm, Stefan. "Perspectives for upconverting nanoparticles." ACS nano 11.11: 10644-10653, 2017. [
DOI:10.1021/acsnano.7b07120] [
PMID]
33. [33] Aggarwal, V., and S. Singh. "Improve NGL recovery." Hydrocarbon Processing 80.5: 41-41, 2001.
34. [34] Li, Hao, et al. "Multi-Mode Lanthanide-Doped Ratiometric Luminescent Nanothermometer for Near-Infrared Imaging within Biological Windows." Nanomaterials 13.1: 219, 2023. [
DOI:10.3390/nano13010219] [
PMID] [
]
35. [35] CARLOS, Luís Dias; PALACIO, Fernando (ed.). Thermometry at the nanoscale: Techniques and selected applications. Royal Society of Chemistry, 2015. [
DOI:10.1039/9781782622031]