1. [1] Tress W., Marinova N., Moehl T., Zakeeruddin S. M., Nazeeruddin M. K. and Grätzel M., "Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field", Energy & Environmental Science, 8 (3), 995-1004, 2015. [
DOI:10.1039/C4EE03664F]
2. [2] Cheng C., Wang Y., Xu L., Liu K., Dang B., Lu Y., et al., "Artificial Astrocyte Memristor with Recoverable Linearity for Neuromorphic Computing", Advanced Electronic Materials, 8 (8), 2100669, 2022. [
DOI:10.1002/aelm.202100669]
3. [3] Kuzum D., Jeyasingh R. G. D., Lee B. and Wong H. S. P., "Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing", Nano Letters, 12 (5), 2179-2186, 2012. [
DOI:10.1021/nl201040y] [
PMID]
4. [4] Shao Y., Xiao Z., Bi C., Yuan Y. and Huang J., "Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells", Nature Communications, 5 (1), 5784, 2014. [
DOI:10.1038/ncomms6784] [
PMID]
5. [5] Wang T. Y., Meng J. L., Chen L., Zhu H., Sun Q. Q., Ding S. J., et al., "Flexible 3D memristor array for binary storage and multi‐states neuromorphic computing applications", InfoMat, 3 (2), 212-221, 2021. [
DOI:10.1002/inf2.12158]
6. [6] Xiao X., Hu J., Tang S., Yan K., Gao B., Chen H., et al., "Recent Advances in Halide Perovskite Memristors: Materials, Structures, Mechanisms, and Applications", Advanced Materials Technologies, 5 (6), 1900914, 2020. [
DOI:10.1002/admt.201900914]
7. [7] Park Y., Kim S. H., Lee D. and Lee J.-S., "Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory", Nature Communications, 12 (1), 3527, 2021. [
DOI:10.1038/s41467-021-23871-w] [
PMID] [
]
8. [8] Kang K., Ahn H., Song Y., Lee W., Kim J., Kim Y., et al., "High-Performance Solution-Processed Organo-Metal Halide Perovskite Unipolar Resistive Memory Devices in a Cross-Bar Array Structure", Advanced Materials, 31 (21), 1804841, 2019. [
DOI:10.1002/adma.201804841] [
PMID]
9. [9] John R. A., Shah N., Vishwanath S. K., Ng S. E., Febriansyah B., Jagadeeswararao M., et al., "Halide perovskite memristors as flexible and reconfigurable physical unclonable functions", Nature Communications, 12 (1), 3681, 2021. [
DOI:10.1038/s41467-021-24057-0] [
PMID] [
]
10. [10] Ma Z., Ge J., Chen W., Cao X., Diao S., Liu Z., et al., "Reliable Memristor Based on Ultrathin Native Silicon Oxide", ACS Applied Materials & Interfaces, 14 (18), 21207-21216, 2022. [
DOI:10.1021/acsami.2c03266] [
PMID]
11. [11] Zhao X., Wang Z., Li W., Sun S., Xu H., Zhou P., et al., "Organic-Inorganic Perovskite Memristors: Photoassisted Electroforming Method for Reliable Low-Power Organic-Inorganic Perovskite Memristors", Advanced Functional Materials, 30 (17), 2070111, 2020. [
DOI:10.1002/adfm.201910151]
12. [12] Liu Q., Gao S., Xu L., Yue W., Zhang C., Kan H., et al., "Nanostructured perovskites for nonvolatile memory devices", Chemical Society Reviews, 51 (9), 3341-3379, 2022. [
DOI:10.1039/D1CS00886B] [
PMID]
13. [13] Chen B., Yang M., Priya S. and Zhu K., "Origin of J-V Hysteresis in Perovskite Solar Cells", The Journal of Physical Chemistry Letters, 7 (5), 905-917, 2016. [
DOI:10.1021/acs.jpclett.6b00215] [
PMID]
14. [14] Carrillo J., Guerrero A., Rahimnejad S., Almora O., Zarazua I., Mas-Marza E., et al., "Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells", Advanced Energy Materials, 6 (9), 1502246, 2016. [
DOI:10.1002/aenm.201502246]
15. [15] Garcia-Belmonte G. and Bisquert J., "Distinction between capacitive and noncapacitive hysteretic currents in operation and degradation of perovskite solar cells", ACS Energy Letters, 1 (4), 683-688, 2016. [
DOI:10.1021/acsenergylett.6b00293]
16. [16] Fang Y., Zhai S., Chu L. and Zhong J., "Advances in halide perovskite memristor from lead-based to lead-free materials", ACS Applied Materials & Interfaces, 13 (15), 17141-17157, 2021. [
DOI:10.1021/acsami.1c03433] [
PMID]
17. [17] Wang Y., Cao M., Bian J., Li Q. and Su J., "Flexible ZnO Nanosheet-Based Artificial Synapses Prepared by Low-Temperature Process for High Recognition Accuracy Neuromorphic Computing", Advanced Functional Materials, 32 (52), 2209907, 2022. [
DOI:10.1002/adfm.202209907]
18. [18] Xiao Z., Yuan Y., Shao Y., Wang Q., Dong Q., Bi C., et al., "Giant switchable photovoltaic effect in organometal trihalide perovskite devices", Nature materials, 14 (2), 193-198, 2015. [
DOI:10.1038/nmat4150] [
PMID]
19. [19] Kim H., Choi M.-J., Suh J. M., Han J. S., Kim S. G., Le Q. V., et al., "Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109", NPG Asia Materials, 12 (1), 21, 2020. [
DOI:10.1038/s41427-020-0202-2]
20. [20] Sokolov A., Ali M., Li H., Jeon Y.-R., Ko M. J. and Choi C., "Partially Oxidized MXene Ti3C2T Sheets for Memristor having Synapse and Threshold Resistive Switching Characteristics", Advanced Electronic Materials, 7 (2), 2000866, 2021. [
DOI:10.1002/aelm.202000866]
21. [21] Yoo E. J., Lyu M., Yun J.-H., Kang C. J., Choi Y. J. and Wang L., "Resistive Switching Behavior in Organic-Inorganic Hybrid CH3 NH3 PbI3-x Clx Perovskite for Resistive Random Access Memory Devices", Advanced Materials (Deerfield Beach, Fla.), 27 (40), 6170-6175, 2015. [
DOI:10.1002/adma.201502889] [
PMID]
22. [22] Teymourinia H., Gonzales C., Gallardo J. J., Salavati-Niasari M., Bisquert J., Navas J., et al., "Interfacial Passivation of Perovskite Solar Cells by Reactive Ion Scavengers", ACS Applied Energy Materials, 4 (2), 1078-1084, 2021. [
DOI:10.1021/acsaem.0c01804]
23. [23] Pospisil J., Guerrero A., Zmeskal O., Weiter M., Gallardo J. J., Navas J., et al., "Reversible Formation of Gold Halides in Single-Crystal Hybrid-Perovskite/Au Interface upon Biasing and Effect on Electronic Carrier Injection", Advanced Functional Materials, 29 (32), 1900881, 2019. [
DOI:10.1002/adfm.201900881]
24. [24] Green M. A., Ho-Baillie A. and Snaith H. J., "The emergence of perovskite solar cells", Nature Photonics, 8 (7), 506-514, 2014. [
DOI:10.1038/nphoton.2014.134]
25. [25] Wehrenfennig C., Eperon G. E., Johnston M. B., Snaith H. J. and Herz L. M., "High charge carrier mobilities and lifetimes in organolead trihalide perovskites", Advanced Materials (Deerfield Beach, Fla.), 26 (10), 1584, 2014. [
DOI:10.1002/adma.201305172] [
PMID] [
]
26. [26] Sakhatskyi K., John R. A., Guerrero A., Tsarev S., Sabisch S., Das T., et al., "Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites", ACS Energy Letters, 7 (10), 3401-3414, 2022. [
DOI:10.1021/acsenergylett.2c01663] [
PMID] [
]
27. [27] Wang H., Guerrero A., Bou A., Al-Mayouf A. M. and Bisquert J., "Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells", Energy & Environmental Science, 12 (7), 2054-2079, 2019. [
DOI:10.1039/C9EE00802K]
28. [28] Eames C., Frost J. M., Barnes P. R., O'Regan B. C., Walsh A. and Islam M. S., "Ionic transport in hybrid lead iodide perovskite solar cells", Nat Commun, 6, 7497-7505, 2015. [
DOI:10.1038/ncomms8497] [
PMID] [
]