logo
دوره 8، شماره 1 - ( بهار و تابستان 1402 )                   جلد 8 شماره 1 صفحات 14-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Masihi A, Safa M. Investigation of electronic and optical properties of PbO-α monolayer under uniaxial and biaxial strain. JMRPh 2023; 8 (1) :1-14
URL: http://jmrph.khu.ac.ir/article-1-231-fa.html
مسیحی امین، صفا مینا. بررسی خواص الکترونی و اپتیکی تک لایه PbO-α تحت کرنش تک محوره و دومحوره. نشریه پژوهش های نوین فیزیک. 1402; 8 (1) :1-14

URL: http://jmrph.khu.ac.ir/article-1-231-fa.html


دانشگاه آزاد اسلامی
چکیده:   (234 مشاهده)
با استفاده از محاسبه ابتدا به ساکن در چارچوب تئوری تابعی چگالی، خواص الکترونی و اپتیکی تک لایه α- PbO مورد بررسی قرار گرفت. در این بررسی از سه تقریب مختلف، یعنی عملکرد هیبریدی DFT-PBE، mBJ و HSE06 استفاده شد. با ارزیابی پارامترهای الکترونی تک لایه مشخص می­شود که این ماده تک لایه دوبعدی رفتار نیمه هادی را نشان می­دهد و دارای یک شکاف باند مستقیم متوسط 2.55 (2.50 eV ، 2.70 eV) است که در سطح تئوری PBE (mBJ، HSE06) محاسبه شده است و می­تواند به طور موثر توسط اثرات کرنش کنترل شود. تجزیه و تحلیل خواص اپتیکی نشان می­دهد که تک لایه α-PbO به عنوان یک ماده تقریباً شفاف در محدوده نور مرئی عمل می­کند، با این حال، جذب و بازتاب خوبی در محدوده فرابنفش طیف الکترومغناطیسی نشان می­دهد. علاوه بر این، محاسبات نشان می­دهد که اسکن کرنش تک محوری و دو محوری به طور موثری خواص اپتیکی تک لایه α-PbO را تعدیل می­کند. خواص الکترونی و اپتیکی عالی محاسبه شده نشان می­دهد که تک لایه دو بعدی α-PbO می­تواند در فناوری­های نانو اپتوالکترونیک استفاده شود.

 
متن کامل [PDF 2129 kb]   (131 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/9/14 | پذیرش: 1403/8/26 | انتشار: 1402/6/10 | انتشار الکترونیک: 1402/6/10

فهرست منابع
1. [1] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, "Silicene: compelling experimental evidence for graphene-like two-dimensional silicon," Phys. Rev. Lett., vol. 108, p. 155501, 2012. [DOI:10.1103/PhysRevLett.108.155501] [PMID]
2. [2] M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. LeLay, "Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene," New J. Phys., vol. 16, p. 095002, 2014. [DOI:10.1088/1367-2630/16/9/095002]
3. [3] Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C. Zhang, "Large-gap quantum spin hall insulators in tin films," Phys. Rev. Lett., vol. 111, p. 136804, 2013. [DOI:10.1103/PhysRevLett.111.136804] [PMID]
4. [4] X. Tan, F. Li, and Z. Chen, "Metallic BSi3 silicene and its one-dimensional derivatives: unusual nanomaterials with planar aromatic D6h six-membered silicon rings," Phys. Chem. C, vol. 118, p. 25825, 2014. [DOI:10.1021/jp507011p]
5. [5] Y. Li, Y. Liao, P. V. R. Schleyer, and Z. Chen, "Al2C monolayer: the planar tetracoordinate carbon global minimum," Nanoscale, vol. 6, p. 10784, 2014. [DOI:10.1039/C4NR01972E] [PMID]
6. [6] S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, "Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities," Angew. Chem. Int. Ed., vol. 55, no. 5, pp. 1666-1669, 2016. [DOI:10.1002/anie.201507568] [PMID]
7. [7] L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, "Evidence for Dirac fermions in a honeycomb lattice based on silicon," Phys. Rev. Lett., vol. 109, no. 5, p. 056804, 2012. [DOI:10.1103/PhysRevLett.109.056804] [PMID]
8. [8] K. Shehzad, Y. Xu, C. Gao, and X. Duan, "Three-dimensional macro-structures of two-dimensional nanomaterials," Chem. Soc. Rev., vol. 45, no. 20, pp. 5541-5554, 2016. [DOI:10.1039/C6CS00218H] [PMID]
9. [9] P. Z. Tang, P. C. Chen, W. D. Cao, H. Q. Huang, S. Cahangirov, L. D. Xian, Y. Xu, S. C. Zhang, W. H. Duan, and A. Rubio, "Stable two-dimensional dumbbell stanene: a quantum spin hall insulator," Phys. Rev. B, vol. 90, no. 12, p. 121408, 2014. [DOI:10.1103/PhysRevB.90.121408]
10. [10] S. Rachel and M. Ezawa, "Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene," Phys. Rev. B, vol. 89, no. 19, p. 195303, 2014. [DOI:10.1103/PhysRevB.89.195303]
11. [11] Q. Tang, Z. Zhou, and Z. Chen, "Innovation and discovery of graphene-like materials via density-functional theory computations," Wiley Interdisciplin. Rev.: Comput. Molecular Sci., vol. 5, no. 5, pp. 360-371, 2015. [DOI:10.1002/wcms.1224]
12. [12] X. Zhang, E. S. Peney, and B. I. Yakobson, "Two-dimensional boron: structures, properties and applications," Chem. Soc. Rev., vol. 46, pp. 6746-6763, 2017. [DOI:10.1039/C7CS00261K] [PMID]
13. [13] L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, "Buckled germanene formation on Pt(111)," Adv. Mater., vol. 26, no. 28, pp. 4820-4824, 2014. [DOI:10.1002/adma.201400909] [PMID]
14. [14] F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, "Epitaxial growth of two-dimensional stanene," Nat. Mater., vol. 14, no. 10, pp. 1020-1025, 2015. [DOI:10.1038/nmat4384] [PMID]
15. [15] G. Cassabois, P. Valvin, and B. Gil, "Hexagonal boron nitride is an indirect bandgap semiconductor," Nature Photon., vol. 10, pp. 262-266, 2016. [DOI:10.1038/nphoton.2015.277]
16. [16] H. S. Tsai, S. W. Wang, C. H. Hsiao, C. W. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, "Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons," Chem. Mater., vol. 28, no. 2, pp. 425-430, 2016. [DOI:10.1021/acs.chemmater.5b04949]
17. [17] H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, "The advent of multilayer antimonene nanoribbons with room temperature orange light emission," Chem. Commun., vol. 52, no. 54, pp. 8409-8412, 2016. [DOI:10.1039/C6CC02778D] [PMID]
18. [18] J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, "Two-dimensional antimonene single crystals grown by Van Der Waals Epitaxy," Nat. Commun., vol. 7, p. 13352, 2016. [DOI:10.1038/ncomms13352] [PMID] []
19. [19] P. Kumr, J. Liu, P. Ranjan, Y. Hu, S. S. Yamijala, S. K. Pati, J. Irudayaraj, and G. J. Cheng, "Alpha lead oxide (α-PbO): a new 2D material with visible light sensitivity," Small, 2018. [DOI:10.1002/smll.201703346] [PMID]
20. [20] S. Das, G. Shi, N. Sanders, and E. Kioupakis, "Electronic and optical properties of two-dimensional α-PbO from first principles," Chem. Mater., vol. 30, pp. 7124-7129, 2018. [DOI:10.1021/acs.chemmater.8b02956]
21. [21] S. A. Khan, B. Amin, L. Y. Gan, and Iftikhar Ahmad, "Strain engineering of electronic structures and photocatalytic responses of MXenes functionalized by oxygen," Phys. Chem. Chem. Phys., vol. 19, pp. 14738-14745, 2017. [DOI:10.1039/C7CP02513K] [PMID]
22. [22] P. T. T. Le, N. N. Hieu, L. M. Bui, H. V. Phuc, B. D. Hoi, B. Aming, and Ch. V. Nguyen, "Structural and electronic properties of a van der Waals heterostructure based on silicene and gallium selenide: effect of strain and electric field," Phys. Chem. Chem. Phys., vol. 20, pp. 27856-27864, 2018. [DOI:10.1039/C8CP05588B] [PMID]
23. [23] D. Muoi, N. N. Hieu, H. T. T. Phung, H. V. Phuc, B. Amin, B. D. Hoi, N. V. Hieu, L. C. Nhan, C. V. Nguyen, and P. T. T. Le, "Electronic properties of WS2 and WSe2 monolayers with biaxial strain: a first-principles study," Chem. Phys. Lett., vol. 519, pp. 69-75, 2018. [DOI:10.1016/j.chemphys.2018.12.004]
24. [24] K. D. Pham, N. N. Hieu, L. M. Bui, H. V. Phuc, B. D. Hoi, L. T. N. Tu, L. G. Bach, V. V. Ilyasov, B. Amin, M. Idrees, and C. V. Nguyen, "Vertical strain and electric field tunable electronic properties of type-II band alignment C2N/InSe van der Waals heterostructure," Chem. Phys. Lett., vol. 716, pp. 155-160, 2018. [DOI:10.1016/j.cplett.2018.12.027]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.