logo
Volume 8, Issue 2 (Autumn and Winter 2023 2024)                   JMRPh 2024, 8(2): 34-43 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharafi B, Bahrami B, Kiamehr Z, goodarzi M. Estimation of the mobility of one-dimensional gallium nitride nanowire system in the presence of ionized impurity. JMRPh 2024; 8 (2) :34-43
URL: http://jmrph.khu.ac.ir/article-1-216-en.html
Tafresh University
Abstract:   (74 Views)
Nitrate compounds III-N with a wide band gap have an important role in the field of optoelectronics and electronic devices with high frequency and power. Gallium nitride (GaN) has emerged as one of the most important and widely used semiconducting material among them. In this article, the electron mobility in one dimensional nanoribbon gallium nitride in the presence of impurities has been investigated and we compare our results with electron mobility of two dimensional systems. The Boltzmann transport equation and relaxation time approximation with considering the ionized impurity potential are used in calculations. The influence of different relevant physical parameters such as width of nanoribbon strips, Fermi energy and impurity density on the mobility is examined. Finally the electron mobility as a function of Fermi energy, distance between impurity with carriers and width of nanoribbons for gallium nitride is plotted. As it is expected, numerical results show that the mobility of GaN nanoribbon for very large width move toward mobility in two dimensional electron gas.
 
Full-Text [PDF 1571 kb]   (55 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/01/25 | Accepted: 2024/12/11 | Published: 2024/02/29

References
1. [1] X. Li, J. Xu, Y. Tang, et al. "GaN based ultraviolet detectors and its recent development", Infrared and Laser Engineering, 2006, vol. 35, no. 3, pp. 276-280, 2006.
2. [2] M. Benaissa, L.Gu, M. Korytov, T. Huault, P. Van Aken, J. Brault, "Phase separation in GaN/AlGaN quantum dots". Applied Physics Letters, vol. 95, no. 04, pp. 141901, 2009. [DOI:10.1063/1.3242010]
3. [3] P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, "Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN", Physical Review B, vol. 77, no. 07, pp. 075202-1 - 075202-15, 2008. [DOI:10.1103/PhysRevB.77.075202]
4. [4] M. Lundstrom, "Fundamentals of Carrier Transport, 2nd edn", Measurement Science and Technology, vol. 13, no. 02, pp. 230, 2002. [DOI:10.1088/0957-0233/13/2/703]
5. [5] Y. Du, B. Chang, X. Fu, X. Wang, M. Wang, "Electronic structure and optical properties of zinc-blende GaN", Optik-International Journal for Light and Electron Optics, vol. 23, no. 24, pp. 2208-2212, 2012. [DOI:10.1016/j.ijleo.2011.10.017]
6. [6] G. Y. Gao, K. L. Yao, Z. L. Liu, Y. L. Li, Y. C. Li, Q. M. Liu, "Ab initio pseudopotential studies of the pressure dependences of structural, electronic and optical properties for GaN". Solid state communications, vol. 138, no. 10-11, pp. 494-497, 2006. [DOI:10.1016/j.ssc.2006.04.028]
7. [7] K. Shimada, T. Sota, K. Suzuki, "First-principles study on electronic and elastic properties of BN, AlN, and GaN". Journal of Applied Physics, vol. 84, no. 09, pp. 4951-4958, 1998. [DOI:10.1063/1.368739]
8. [8] C. Bungaro, K. Rapcewicz, J. Bernholc, "Ab initio phonon dispersions of wurtzite AlN, GaN, and InN", Physical Review, vol. 61, no. 10, pp. 6720-6725, 2000. [DOI:10.1103/PhysRevB.61.6720]
9. [9] W. A. Hadi, S. Chowdhury, M. S. Shur, S. K. O'Leary, "A detailed characterization of the transient electron transport within zinc oxide, gallium nitride, and gallium arsenide". Journal of Applied Physics, vol. 112, no. 12, pp. 123722, 2012. [DOI:10.1063/1.4771679]
10. [10] K. Hirama, Y. Taniyasu, M. Kasu, "AlGaN/GaN high-electron-mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy". Applied Physics Letters, vol. 98, no. 16, pp. 162112, 2011. [DOI:10.1063/1.3574531]
11. [11] R. Neuberger, G. Müller, O. Ambacher, M. Stutzmann, "High‐Electron‐Mobility AlGaN/GaN Transistors (HEMTs) for Fluid Monitoring Applications". physica status solidi, vol. 185, no. 01, pp. 85-89, 2001. https://doi.org/10.1002/1521-396X(200105)185:1<85::AID-PSSA85>3.0.CO;2-U [DOI:10.1002/1521-396X(200105)185:13.0.CO;2-U]
12. [12] D. L. Rode, D. K. Gaskill, "Electron Hall mobility of n- GaN'', Appl. Phys, vol. 66, pp. 2418, 1995. [DOI:10.1063/1.115554]
13. [13] D. C. Look, D.C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, "Defect Donor and Acceptor in GaN", Phys. Rev, vol. 79, pp. 2273, 1997. [DOI:10.1103/PhysRevLett.79.2273]
14. [14] D. C. Look, R. J. Molnar, "Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements", Appl. Phys, vol. 70, pp. 3377, 1997. [DOI:10.1063/1.119176]
15. [15] N. Weimann and L. Eastman, J. Appl, "Scattering of electrons at threading dislocations in GaN", Journal of Applied Physics, vol. 83, no. 07, pp. 3656, 2012. [DOI:10.1063/1.366585]
16. [16] H. Ng, D. Doppalapudi, T. Moustakas, N. Weimann, and L. Eastman, "The role of dislocation scattering in n-type GaN films", Applied Physics Letters, vol. 73, pp. 821, 1998. [DOI:10.1063/1.122012]
17. [17] S. Dhar, S. Ghosh, "Low field electron mobility in GaN", Journal of applied physics, vol. 86, no. 05, pp. 2668-2676, 1999. [DOI:10.1063/1.371108]
18. [18] M. Akarsu, S. Aydogu, O. Ozbas, "Calculation of the electron mobility of GaN semiconductor compound using the Monte Carlo method". Romanian Journal of Physics, vol. 50, pp. 869, 2005.
19. [19] J. B. Webb, H. Tang, S. Rolfe, J. A. Bardwell, "Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy". Applied Physics letters, vol. 75, no. 07, pp. 953-955, 1999. [DOI:10.1063/1.124252]
20. [20] N. S. Mansour, K. W. Kim, M. A. Littlejohn, "Theoretical study of electron transport in gallium nitride". Journal of Applied Physics, vol. 77, no. 06, pp. 2834-2836, 1995. [DOI:10.1063/1.358696]
21. [21] J. Feilhauer, M. Moško, "Quantum and Boltzmann transport in a quasi-one-dimensional wire with rough edges". Physical Review B, vol. 83, pp. 245328, 2011. [DOI:10.1103/PhysRevB.83.245328]
22. [22] M. I. Katsnelson, A. K. Geim, "Electron scattering on microscopic corrugations in grapheme, Philosophical Transactions of the Royal Society of London A, Mathematical", Physical and Engineering Sciences, vol. 366, pp. 195-204, 2008. [DOI:10.1098/rsta.2007.2157] [PMID]
23. [23]. S. D. Sarma, E. H. Hwang, "Short-range disorder effects on electronic transport in two-dimensional semiconductor structures", Physical Review B, vol. 89, pp. 121413, 2014. [DOI:10.1103/PhysRevB.89.121413]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.