1. [1] X. Li, J. Xu, Y. Tang, et al. "GaN based ultraviolet detectors and its recent development", Infrared and Laser Engineering, 2006, vol. 35, no. 3, pp. 276-280, 2006.
2. [2] M. Benaissa, L.Gu, M. Korytov, T. Huault, P. Van Aken, J. Brault, "Phase separation in GaN/AlGaN quantum dots". Applied Physics Letters, vol. 95, no. 04, pp. 141901, 2009. [
DOI:10.1063/1.3242010]
3. [3] P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, "Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN", Physical Review B, vol. 77, no. 07, pp. 075202-1 - 075202-15, 2008. [
DOI:10.1103/PhysRevB.77.075202]
4. [4] M. Lundstrom, "Fundamentals of Carrier Transport, 2nd edn", Measurement Science and Technology, vol. 13, no. 02, pp. 230, 2002. [
DOI:10.1088/0957-0233/13/2/703]
5. [5] Y. Du, B. Chang, X. Fu, X. Wang, M. Wang, "Electronic structure and optical properties of zinc-blende GaN", Optik-International Journal for Light and Electron Optics, vol. 23, no. 24, pp. 2208-2212, 2012. [
DOI:10.1016/j.ijleo.2011.10.017]
6. [6] G. Y. Gao, K. L. Yao, Z. L. Liu, Y. L. Li, Y. C. Li, Q. M. Liu, "Ab initio pseudopotential studies of the pressure dependences of structural, electronic and optical properties for GaN". Solid state communications, vol. 138, no. 10-11, pp. 494-497, 2006. [
DOI:10.1016/j.ssc.2006.04.028]
7. [7] K. Shimada, T. Sota, K. Suzuki, "First-principles study on electronic and elastic properties of BN, AlN, and GaN". Journal of Applied Physics, vol. 84, no. 09, pp. 4951-4958, 1998. [
DOI:10.1063/1.368739]
8. [8] C. Bungaro, K. Rapcewicz, J. Bernholc, "Ab initio phonon dispersions of wurtzite AlN, GaN, and InN", Physical Review, vol. 61, no. 10, pp. 6720-6725, 2000. [
DOI:10.1103/PhysRevB.61.6720]
9. [9] W. A. Hadi, S. Chowdhury, M. S. Shur, S. K. O'Leary, "A detailed characterization of the transient electron transport within zinc oxide, gallium nitride, and gallium arsenide". Journal of Applied Physics, vol. 112, no. 12, pp. 123722, 2012. [
DOI:10.1063/1.4771679]
10. [10] K. Hirama, Y. Taniyasu, M. Kasu, "AlGaN/GaN high-electron-mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy". Applied Physics Letters, vol. 98, no. 16, pp. 162112, 2011. [
DOI:10.1063/1.3574531]
11. [11] R. Neuberger, G. Müller, O. Ambacher, M. Stutzmann, "High‐Electron‐Mobility AlGaN/GaN Transistors (HEMTs) for Fluid Monitoring Applications". physica status solidi, vol. 185, no. 01, pp. 85-89, 2001.
https://doi.org/10.1002/1521-396X(200105)185:1<85::AID-PSSA85>3.0.CO;2-U [
DOI:10.1002/1521-396X(200105)185:13.0.CO;2-U]
12. [12] D. L. Rode, D. K. Gaskill, "Electron Hall mobility of n- GaN'', Appl. Phys, vol. 66, pp. 2418, 1995. [
DOI:10.1063/1.115554]
13. [13] D. C. Look, D.C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, "Defect Donor and Acceptor in GaN", Phys. Rev, vol. 79, pp. 2273, 1997. [
DOI:10.1103/PhysRevLett.79.2273]
14. [14] D. C. Look, R. J. Molnar, "Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements", Appl. Phys, vol. 70, pp. 3377, 1997. [
DOI:10.1063/1.119176]
15. [15] N. Weimann and L. Eastman, J. Appl, "Scattering of electrons at threading dislocations in GaN", Journal of Applied Physics, vol. 83, no. 07, pp. 3656, 2012. [
DOI:10.1063/1.366585]
16. [16] H. Ng, D. Doppalapudi, T. Moustakas, N. Weimann, and L. Eastman, "The role of dislocation scattering in n-type GaN films", Applied Physics Letters, vol. 73, pp. 821, 1998. [
DOI:10.1063/1.122012]
17. [17] S. Dhar, S. Ghosh, "Low field electron mobility in GaN", Journal of applied physics, vol. 86, no. 05, pp. 2668-2676, 1999. [
DOI:10.1063/1.371108]
18. [18] M. Akarsu, S. Aydogu, O. Ozbas, "Calculation of the electron mobility of GaN semiconductor compound using the Monte Carlo method". Romanian Journal of Physics, vol. 50, pp. 869, 2005.
19. [19] J. B. Webb, H. Tang, S. Rolfe, J. A. Bardwell, "Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy". Applied Physics letters, vol. 75, no. 07, pp. 953-955, 1999. [
DOI:10.1063/1.124252]
20. [20] N. S. Mansour, K. W. Kim, M. A. Littlejohn, "Theoretical study of electron transport in gallium nitride". Journal of Applied Physics, vol. 77, no. 06, pp. 2834-2836, 1995. [
DOI:10.1063/1.358696]
21. [21] J. Feilhauer, M. Moško, "Quantum and Boltzmann transport in a quasi-one-dimensional wire with rough edges". Physical Review B, vol. 83, pp. 245328, 2011. [
DOI:10.1103/PhysRevB.83.245328]
22. [22] M. I. Katsnelson, A. K. Geim, "Electron scattering on microscopic corrugations in grapheme, Philosophical Transactions of the Royal Society of London A, Mathematical", Physical and Engineering Sciences, vol. 366, pp. 195-204, 2008. [
DOI:10.1098/rsta.2007.2157] [
PMID]
23. [23]. S. D. Sarma, E. H. Hwang, "Short-range disorder effects on electronic transport in two-dimensional semiconductor structures", Physical Review B, vol. 89, pp. 121413, 2014. [
DOI:10.1103/PhysRevB.89.121413]