logo
Volume 9, Issue 2 (Autumn and Winter 2024 2025)                   JMRPh 2025, 9(2): 34-48 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khoram M, Yasserian K, Shahandehgermi N. Effect of the rise time of the biasing voltage and neutral gas pressure on time evolution of the plasma boundary layer in plasma immersion ion implantation. JMRPh 2025; 9 (2) :34-48
URL: http://jmrph.khu.ac.ir/article-1-262-en.html
Department of Physics, Bo. C., Islamic Azad University, Borujerd, Iran
Abstract:   (157 Views)
Formation and temporal evolution of the plasma boundary layer in plasma immersion ion implantation is investigated in the presence of a static magnetic field. Here the ions are not cold and their temperature has been taken into account. By using a negative high-voltage pulse with an exponential ramp function on a target immersed in plasma, a positive space charge is formed and expanded around it. Rise time of the ramp function and pressure of the plasma neutral gas influence the formation and expansion of the plasma boundary layer near the target. The time evolution of the ion current density, ion kinetic energy and ion incident angle as well as the time evolution of the positive space charge and the width of the boundary layer are studied as functions of the neutral gas pressure and the rise time of the exponential ramp function. Our findings show that the time dependency of the variables of the plasma boundary layer is more pronounced for a longer rise time.
Full-Text [PDF 1426 kb]   (60 Downloads)    
Type of Study: Research | Subject: Special
Received: 2025/04/19 | Accepted: 2025/08/5 | Published: 2025/03/15 | ePublished: 2025/03/15

References
1. C. Bortolan, C. Paternoster, S. Turgeon, C. Paoletti, M. Cabibbo, N. Lecis, and D. Mantovani, Plasma-immersion ion implantation surface oxidation on a cobalt-chromium alloy for biomedical applications, Biointerphases. 15,041004 (2020). https://doi.org/10.1116/6.0000278 [DOI:10.1116/6.0000278.] [PMID]
2. M. Risch, M. P. Bradley, Prospects for band gap engineering by plasma ion implantation, Phys. Status. Solidi. C. 6, S210-S213 (2009). [DOI:10.1002/pssc.200881279]
3. P. Chu, C. Chan, Applications of plasma immersion ion implantation in microelectronics-a brief review, Surf. Coat. Technol. 136, 151(2001). [DOI:10.1016/S0257-8972(00)01046-X]
4. P. K. Chu, S. Qin, C. Chan, N. W. Cheung, L. A. Larson, Plasma immersion ion implantation-a fledgling technique for semiconductor processing, Mater. Sci. Eng. R. 17(6), 207 (1996). [DOI:10.1016/S0927-796X(96)00194-5]
5. M. A. Lieberman, Model of plasma immersion ion implantation, J. Appl. Phys. 66, 2926-2929 (1989). https://doi.org/10.1063/1.344172 [DOI:10.1063/1.344172.]
6. M. Lieberman, A. Lichtenberg, Principle of Plasma Discharges and Materials Processing, 2nd edn. (Wiley Interscience, 2005), pp. 176-178. [DOI:10.1002/0471724254]
7. A. Fridman, Plasma chemistry, (Cambridge university press, 2008), p. 144. [DOI:10.1017/CBO9780511546075]
8. S. Kar, S. Mukherjee, Study of electron behavior in a pulsed ion sheath, Phys. Plasmas. 15, 063504 (2008)﮳ [DOI:10.1063/1.2934640]
9. J. Moreno, A. Khodaee, D. Okerstrom, M. P. Bradley, L. Couedel, Time-resolved evolution of plasma parameters in a plasma immersion ion implantation source, Phys. Plasmas. 28, 123523 (2021). [DOI:10.1063/5.0063610]
10. T. E. Sheridan, J. Goree, Collisional plasma sheath model, Phys. Fluid B. 3, 2796-2804 (1991). [DOI:10.1063/1.859987]
11. L. Minghao, Z. Yu, D. Wanyu, L. Jinyuan, W. Xiaogang, Effects of Ion Temperature on Collisionless and Collisional RF Sheath, Plasma Sci. Technol. 8, 544 (2006). [DOI:10.1088/1009-0630/8/5/10]
12. D. T. K. Kwok, Q. Y. Lu, L. H. Li, R. K. Y. Fu, P. K. Chu, Theoretical investigation of sheath expansion and implant fluence uniformity in enhanced glow discharge plasma immersion ion implantation, Appl. Phys. Lett. 93, 091501 (2008). [DOI:10.1063/1.2977962]
13. G. A. Emmett, M. A. Henry, Numerical simulation of plasma sheath expansion, with applications to plasma‐source ion implantation, J. Appl. Phys. 71, 113-117 (1992). [DOI:10.1063/1.350740]
14. T. E. Sheridan, Transient sheath in a cylindrical bore for finite-rise-time voltage pulses, Surf. Coat. Tech. 85 (3), 204-208 (1996). [DOI:10.1016/0257-8972(96)02858-7]
15. J. E. Allen, Comment on; Comment on; Magnetic field effects on gas discharge plasmas [Phys. Plasmas 14, 024701 (2007)], Phys. Plasmas. 14, 094703 (2007). https://doi.org/10.1063/1.2772625 [DOI:10.1063/1.2772625.]
16. M. Khoram, F. Masoudi, Effect of constant collision mean free time on the boundary layer of the active collisional warm plasma, Sci. Rep. 11, 18359 (2021). [DOI:10.1038/s41598-021-97750-1] [PMID] []
17. D. T. K. Kwok, M. M. M. Bilek, D. R. Mckenzie, P. K. Chu, The importance of bias pulse rise time for determining shallow implanted dose in plasma immersion ion implantation, Appl. Phys. Lett. 82, 1827 (2003). [DOI:10.1063/1.1563063]
18. K. Yasserian, M. Aslaninejad, Parameter space region in the collisional magnetized electronegative plasma, Phys. Plasmas. 17, 023501 (2010). [DOI:10.1063/1.3310837]
19. M. Khoramabadi, H. Ghomi, P. D. Shukla, Numerical investigation of the ion temperature effects on magnetized DC plasma sheath, J. Appl. Phys. 109, 073307 (2011). [DOI:10.1063/1.3569844]
20. Elia Jüngling, Sebastian Wilczek, Thomas Mussenbrock, Marc Böke and Achim von Keudell, Plasma sheath tailoring by a magnetic field for three-dimensional plasma etching, Appl. Phys. Lett. 124, 074101 (2024). [DOI:10.1063/5.0187685]
21. T. E. Sheridan, Pulsed sheath dynamics in a small cylindrical bore, Phys. Plasmas 1, 3485 (1994). [DOI:10.1063/1.870881]
22. Kolter Bradshaw, Ammar Hakim and Bhuvana Srinivasan, Effects of oxidation and impurities in lithium surfaces on the emitting wall plasma sheath, Phys. Plasmas 32, 063506 (2025). [DOI:10.1063/5.0258265]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.