1. R. Rennie, Oxford Dictionary of Physics, 7rd ed., Oxford University Press, Oxford 2015.
2. M. A. Nielsen and, I.L. Chuang, Quantum Computation and Quantum Information. Cambridge, University Press, Cambridge, 2000
3. J. A. Buchmann, Introduction to Quantum Algorithms, American Mathematical Society, 2024.
4. V. M. Kendon, K. Nemoto, W. J. Munro, Quantum Analogue Computing,
5. Phil. Trans. R. Soc. A , 368:3621-3632, 2010 . [
DOI:10.1098/rsta.2010.0039] [
PMID]
6. T. Kadowaki, Enhancing Quantum in Digital-Analog Quantum Computing, APL Quantum, 1, 026101, 2024. [
DOI:10.1063/5.0179540]
7. D. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer," Proc. R. Soc. Lond. A., vol. 400, no. 1818, pp. 97-117, 1985 [
DOI:10.1098/rspa.1985.0070]
8. D. Deutsch and R. Jozsa, "Rapid solution of problems by quantum computation," Proc. R. Soc. Lond. A., vol. 439, no. 1907, pp. 553-558, 1992. [
DOI:10.1098/rspa.1992.0167]
9. E. Bernstein and U. Vazirani, "Quantum complexity theory," in Proc. of the Twenty-Fifth Annual ACM Symp. on Theory of Computing, STOC'93, pp. 11-20, San Diego, CA, USA, 16-18 May 1993. [
DOI:10.1145/167088.167097]
10. D. Coppersmith, An approximate Fourier transform useful in quantum factoring,IBM Reseach Report No. RC19642, 1994.
11. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing, 26(5):1484-1509, 2005. [
DOI:10.1137/S0097539795293172]
12. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Physical Review Letters, 79(2):325-328, 1997. [
DOI:10.1103/PhysRevLett.79.325]
13. C. Durr and P. Høyer, A quantum algorithm for finding the minimum, arXiv:quant-ph/9607014, 1996.
14. D. Janzing and P. Wocjan, A simple promiseBQP-complete matrix problem, Theory of Computing, 3:61-79, 2007. [
DOI:10.4086/toc.2007.v003a004]
15. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum Computation by Adiabatic Evolution, arXive: quant-ph/001106.
16. A. M. Child, E. Farhi, and J. Preskill, "Robustness of adiabatic quantum computation," Phys. Rev. A, vol. 65, no. 1, pp. 0123220-01232210, Jan. 2002. [
DOI:10.1103/PhysRevA.65.012322]
17. S. Das, R. Kobes, and G. Kunstatter, "Adiabatic quantum computation and Deutsch's algorithm" Phys. Rev. A, vol. 65, no. 6, pp.0623100-0623107, Jun. 2002. [
DOI:10.1103/PhysRevA.65.062310]
18. T. Albash and D. A. Lidar "Adiabatic quantum computation", Rev. Mod. Phys., vol. 90, no. 1, pp. 0150020-0150035, Jan./Mar. 2018. [
DOI:10.1103/RevModPhys.90.015002]
19. K. Nagata and T. Nakamura, "Some theoritically organized algorithm for quantum computer" Int. J. Theor. Phys., vol. 59, no. 2, pp. 611-621, 2020. [
DOI:10.1007/s10773-019-04354-7]
20. K. Nagata and T. Nakamura, "Generalization of Deutsch's algorithm" Int. J. Theor. Phys., vol. 59, no. 8, pp. 2557-2661, 2020 [
DOI:10.1007/s10773-020-04522-0]
21. آرش کریم خانی و امیر قلعه, "بهینهسازی حالتهای اولیه برای رایانش کوانتومی آدیاباتیک در یک الگوریتم کوانتومی," مهندسی برق و مهندسی کامپیوتر ایران , جلد 21, شماره 4,
22. pp. 291-295, 1402.
23. J. Roland and N. J. Cerf, "Quantum search by local adiabatic evolution", Phys. Rev. A, vol. 65, p. 042308, 2002. [
DOI:10.1103/PhysRevA.65.042308]
24. S. A. Adamson∗ and P. Wallden,'' Adiabatic quantum unstructured search in parallel'', ArXiv:2502.08594.