logo
دوره 10، شماره 1 - ( بهار و تابستان 1404 )                   جلد 10 شماره 1 صفحات 12-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kiamehr Z, Shafiee M, Shokri B, Razavi Rad S A. Investigating the effect of plasma irradiation of diamond-like carbon nanostructures on the separation performance of membranes based on PES, PP and PVDF. JMRPh 2025; 10 (1) :1-12
URL: http://jmrph.khu.ac.ir/article-1-256-fa.html
کیامهر زینب، شفیعی مجتبی، شگری بابک، رضوی راد سیدعلی. بررسی اثر تابش پلاسمایی نانوساختارهای کربن شبه الماس بر عملکرد جداسازی غشاهایی بر پایه PES، PP و PVDF. نشریه پژوهش های نوین فیزیک. 1404; 10 (1) :1-12

URL: http://jmrph.khu.ac.ir/article-1-256-fa.html


دانشگاه تفرش
چکیده:   (27 مشاهده)
چالش رو به رشد رسوب غشایی در فرآیندهای تصفیه آب، به ویژه در کارخانه های نمک زدایی، نیازمند رویکردهای نوآورانه برای افزایش عملکرد غشا است. این مطالعه یک استراتژی جدید اصلاح سطح را برای غشاهای متفاوت (PES, PVDF, PP) با استفاده از نانوساختارهای کربن شبه الماس از طریق رسوب دهی بخار شیمیایی افزایش‌یافته با پلاسما ارائه می‌کند. اهداف اولیه بهبود آبدوستی غشا، افزایش خواص ضدرسوب و افزایش راندمان دفع نمک با حفظ یکپارچگی ساختاری بود. یک بررسی سیستماتیک برای مقایسه اصلاحات پوشش نانوساختارهای کربن شبه الماس تحت شرایط بهینه پلاسما (قدرت 40 وات، فشار 70 میلی‌تور، تابشدهی 30 دقیقه‌ای) انجام شد. مشخصه‌های سطحی هر سه غشای مورد مطالعه، ترکیب موفقیت‌آمیز نانوساختارهای کربن شبه الماس را نشان داد، که توسط طیف‌سنجی FTIR تأیید شد و تجزیه و تحلیل رامان که پوشش کربنی یکنواخت را بدون تشکیل ساختار کریستالی نشان می‌دهد. غشاهای اصلاح شده بهبود قابل توجهی در خواص سطحی نشان دادند، که نشان دهنده افزایش آبدوستی است. تجزیه و تحلیل AFM صاف شدن سطح قابل توجهی را نشان داد، که به بهبود خواص ضد رسوب کمک می کند. ارزیابی عملکرد پیشرفت‌های استثنایی را در پارامترهای کلیدی غشاهای PES, PVDF نشان داد: شار آب خالص افزایش یافت، در حالی که دفع نمک تا 99٪ بهبود یافت. غشاهای اصلاح‌شده به نرخ بازیابی شار بالایی در مقایسه با غشای اصلاح ‌نشده دست یافت که نشان‌دهنده خواص ضد رسوب برتر است. تست های پایداری در محلول های نمک اشباع، خواص تمیز کنندگی آسان و حفظ آبدوستی را پس از چندین دوره شستشو نشان داد که نشان دهنده دوام عالی است. این کار یک رویکرد اقتصادی مقرون به صرفه را برای توسعه غشاهای ضد رسوب با کارایی بالا با کاربردهای بالقوه در کارخانه‌های نمک‌زدایی و تأسیسات تصفیه فاضلاب معرفی می‌کند. یافته‌ها بینش‌های ارزشمندی را در مورد رابطه بین اصلاح سطح، ویژگی‌های ساختاری و عملکرد غشاء ارائه می‌دهند و به پیشرفت فناوری‌های تصفیه آب پایدار کمک می‌کنند.
 
متن کامل [PDF 1060 kb]   (22 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1403/12/8 | پذیرش: 1404/5/14 | انتشار: 1404/6/31 | انتشار الکترونیک: 1404/6/31

فهرست منابع
1. [1] A. Ahmad, N. C. Lah, S. Ismail, B. Ooi, "Membrane Antifouling Methods and Alternatives: Ultrasound Approach", Separation and Purification Reviews, vol. 41, no. 318, 2012.
2. [2] B. Farokhi, M. Rezaei, Z. Kiamehr and S. Hosseini, "A new approach to provide high water permeable polyethersulfone based nanofiltration membrane by air plasma treatment", International Journal of Engineering, vol. 32, no. 354, 2019.
3. [3] Z. Kiamehr, B. Farokhi, S. Hosseini, "Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with Air-Ar plasma", Korean Journal of Chemical Engineering, vol. 38, no. 114, 2021.
4. [4] A. Esfahani, L. Zhai, A. Sadmani, "Removing Heavy Metals from Landfill Leachate Using Electrospun Polyelectrolyte Fiber Mat-Laminated Ultrafiltration Membrane", Journal of Environmental Chemical Engineering, vol. 9, no. 53, 2021.
5. [5] S. Arefi, A. Khataee, M. Safarpourd, V. Vatanpour, "Modification of Polyethersulfone Ultrafiltration Membrane Using Ultrasonicassisted Functionalized MoS2 for Treatment of Oil Refinery Wastewater", Separation and Purification Technology, vol. 238, no. 6495, 2020.
6. [6] Z. Kiamehr, S. Farahani, B. Farokhi S. Hosseini, "Investigation the Effect of Ar-Air plasma Treatment on Separation Performance of Nanofiltration Membrane: Influence of Time, Power and Composition of Plasma", petroleum Research, vol. 31, no. 105, 2021.
7. [7] Z. Kiamehr, "Modification of a highly-permeable thin-film-based nanofiltration membrane (PVC) to increase efficiency and separation by Air Plasma Treatment", IEEE Trans. Plasma Sci. vol. 50, no. 2952, 2022.
8. [8] A. Broeckmann, J. Busch, T. Wintgens, W. Marquardt, "Modeling of Pore Blocking and Cake Layer Formation in Membrane Filtration for Wastewater Treatment." Desalination, vol. 189, no. 97, 2006.
9. [9] I. Soroko, Y. Bhole, A. Livingston, "Environmentally Friendly Route for the Preparation of Solvent Resistant Polyimide Nanofiltration Membranes", Green Chemistry, vol. 13, no. 162, 2011.
10. [10] Y. Zhao, X. Zhu, K. Wee, R. Bai, "Achieving Highly Effective Non-Biofouling Performance for Polypropylene Membranes Modified by Uv-Induced Surface Graft Polymerization of Two Oppositely Charged Monomers", The Journal of Physical Chemistry B, vol. 114, no. 2422, 2010.
11. [11] Y. Chiao, S. Chen, M. Sivakumar, M. Ang, T. Patra, J. Almodovar, R. Wickramasinghe, W. Hung, "Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property" Polymers, vol. 12, no. 1, 2020.
12. [12] Z. Kiamehr, S. Mozaffari, "Investigating the wetting behavior of polypropylene hydrophobic membrane using CF4 plasma treatment", Modern Physics Letters B, vol. 37, PP. 2350104, 2023.
13. [13] T. Nguyen, F. Roddick, L. Fan, "Biofouling of water treatment membranes", Membranes, vol. 2, no. 804, 2012.
14. [14] Y. Koc, A. Mello, G. McHale, M. Newton, P. Roach, N. Shirtcliffe, "Nano-scale Superhydrophobicity: Suppression of Protein Adsorption and Promotion of Flow-induced Detachment", Lab on a Chip, vol. 8, no. 528, 2008.
15. [15] P. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podesta, P. Milani, "The Effect of Surface Nanometre-scale Morphology on Protein Adsorption", PloS One, vol. 5, pp. 11862, 2010.
16. [16] Q. Wang, Z. Wang, J. Wang, Z. Wu, "Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalace monitoring," RSC Adv, vol. 4, pp. 43990, 2014.
17. [17] D. Rana, T. Matsuura, "Surface modifications for antifouling membranes", Chem. Rev, vol. 110, pp. 2448, 2010.
18. [18] A. Rahimpour, "Photo-Grafting of Hydrophilic Monomers onto the Surface of Nano-Porous Pes Membranes for Improving Surface Properties", Desalination, vol. 265, no. 93, 2011.
19. [19] M. Padaki, A. Isloor, R. Kumar, A. Ismail, T. Matsuura, "Characterization and Desalination Study of Composite Nf Membranes", Journal of Membrane Science, vol. 428, no. 489, 2013.
20. [20] Z. Chong, Y. Koo, "Self-Assembling of NCQDs-TiO2 Nanocomposite on Poly(Acrylic Acid)- Grafted Polyethersulfone Membrane for Photocatalytic Removal and Membrane Filtration", Materials Today: Proceedings, vol. 46, pp. 1901, 2021.
21. [21] A. Esfahani, L. Zhai, A. Sadmani, "Filtration of Biological Sludge by Immersed Hollow-Fiber Membranes: Influence of Initial Permeability Choice of Operating Conditions", Desalination, vol. 146, pp. 427, 2002.
22. [22] Q. Gao, H. Li, X. Zeng, "Novel Nanoparticles Incorporated Polyvinylidene Fluoride Ultrafiltration 18 Membrane" Advanced Materials Research, vol. 746, pp. 390, 2013.
23. [23] J. Garcia, M. Iborra, M. Alcaina, J. Mendoza L. Pastor, "Development of Fouling-Resistant Polyethersulfone Ultrafiltration Membranes via Surface UV Photografting with Polyethylene Glycol/Aluminum Oxide Nanoparticles", Separation and Purification Technology, vol. 135, pp. 88, 2014.
24. [24] V. Goel, U. Mandal, "Surface Modification of Polysulfone Ultrafiltration Membrane by In-Situ Ferric Chloride Based Redox Polymerization of Aniline-Surface Characteristics and Flux Analyses", Korean Journal of Chemical Engineering, vol. 36, pp. 573, 2019.
25. [25] V. Kochkodan, D. Johnson, N. Hilal, "Ploymeric membranes: Surface modification for minimizing (bio) colloidal fouling," Adv. Colloid Interface Sci, vol. 206, pp. 116, 2014.
26. [26] J. Kim, B. Bruggen, "The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ. Pollut, vol. 158, pp. 2335, 2010.
27. [27] L. Ng, A. Mohammad, C. Leo, N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review", Desalination, vol. 308, no. 15, 2013.
28. [28] R. Damodar, S. You, H. Chou, "Study the self-cleaning, antibacterial and photocatalytic properties of TiO 2 entrapped PVDF membranes", J. Hazard. Mater, vol. 172, pp. 1321, 2009.
29. [29] H. Song, J. Shao, Y. He, B. Liu, X. Zhong, "Natural organic matter removal and flux decline with PEG- TiO 2-doped PVDF membranes by integration of ultrafiltration with photocatalysis", J. Membr. Sci, vol. 405, no. 48, 2012.
30. [30] V. Vatanpour, S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, "Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite", Journal of Membrane Science, vol. 375, pp. 284, 2011.
31. [31] S. Madaeni, S. Zinadini, V. Vatanpour, "A New Approach to Improve Antifouling Property of Pvdf Membrane Using in Situ Polymerization of Paa Functionalized TiO2 Nanoparticles", Journal of Membrane Science, vol. 380, pp. 155, 2011.
32. [32] V. Vatanpour, S. Madaeni, L. Rajabi, S. Zinadini, A. Derakhshan, "Boehmite Nanoparticles as a New Nanofiller for Preparation of Antifouling Mixed Matrix Membranes", Journal of Membrane Science, vol. 401, pp. 132, 2012.
33. [33] S. Zinadini, A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, "Preparation of a Novel Antifouling Mixed Matrix Pes Membrane by Embedding Graphene Oxide Nanoplates", Journal of Membrane Science, vol. 453, pp. 292, 2014.
34. [34] K. Al Mahmud, M. Kalam, H. Masjuki, H. Mobarak, N. Zulkifli, "An updated overview of diamond-like carbon coating in tribology", Crit. Rev. Solid State Mater. Sci. vol. 40, no. 90, 2015.
35. [35] R. Roy, S. Ahmed, J. Yi, M. Moon, K. Lee, Y. Jun, "Improvement of adhesion of DLC coating on nitinol substrate by hybrid ion beam deposition technique", Vac, pp. 1179-1183, 2009.
36. [36] J. Li, Z. Xu, H. Yang, C. Feng, J. Shi, "Hydrophilic micro porous PES membranes prepared by PES/PEG/DMAc casting solutions", Journal of applied polymer science, vol. 107, pp. 4100, 2008.
37. [37] L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, M. Sun, "Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue", Journal of Hazardous Materials, vol. 215, pp. 272, 2012.
38. [38] P. Qu, H. Tang, Y. Gao, L. Zhang, S. Wang, "Polyethersulfone Composite Membrane Blended with Cellulose Fibrils", BioResources, vol. 5, pp. 2323, 2010.
39. [39] D. Pavia, G. Lampman, G. Kriz, G. Randall, "Introduction to Organic Laboratory Techniques: A Small-Scale Approach: Cengage Learning", Second ed., Brooks/Cole: Belmont, CA, 2005.
40. [40] L. Ge, Z. Zhu, V. Rudolph, "Enhanced Gas Per- meability by Fabricating Functionalized Multi-Walled Carbon Nanotubes and Polyethersulfone Nanocomposite Membrane", Separation and Purification Technology, vol. 78, no. 76, 2011.
41. [41] B. Li, W. Zhao, Y. Su, Z. Jiang, X. Dong, W. Liu, "Enhanced Desulfurization Performance and Swelling Re- sistance of Asymmetric Hydrophilic Pervaporation Mem- brane Prepared Through Surface Segregation Technique", Journal of Membrane Science, vol. 326, pp. 556, 2009.
42. [42] J. Jhaveri, C. Patel, Z. Murthy, "Preparation, characterization and application of GO-TiO2 /PVC mixed matrix membranes for improvement in performance", Journal of Industrial and Engineering Chemistry, vol. 52, no. 138, 2017.
43. [43] F. Wu, R. Tseng, R. Juang, "A review and experimental verification of using chitosan and its deriva-tives as adsorbents for selected heavy metals", Journal of Environmental Management, vol. 91, pp. 798, 2010.
44. [44] V. Vatanpour, S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, "Novel anti befouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes", Separation and Purification Technology, vol. 90, no. 69, 2012.
45. [45] R. Damodar, S. You, H. Chou, "Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes", Journal of Hazardous Materials, vol. 172, pp. 1321, 2009.
46. [46] M. Li, Z. Zeng, Y. Zhao, C. Hong, Q. Li, "Development of an antimicrobial and antifouling PES membrane with ZnO/Poly(hexamethylene biguanide) nanocomposites incorporation", Chemical Engineering Journal, vol. 481, pp. 148744, 2024.
47. [47] C. Liu, M. Zhang, F. Gao, P. Hong, Z. Wang, "Ta-Fe in-situ coating PES membrane and its application in oily wastewater treatment: insight into modification and anti-fouling mechanisms", Separation and Purification Technology, vol. 346, pp. 127506, 2024.
48. [48] R. Desiriani, L. Marbelia, A. Kurniawan, I.G. Wenten, "Preparation of polyethersulfone ultrafiltration membrane coated natural additives toward antifouling and antimicrobial agents for surface water filtration", Journal of Environmental Chemical Engineering, vol. 12, pp. 111797, 2024.
49. [49] M. Zhai, Y. Li, J. Wang, F. Liu, "High-performance loose nanofiltration membranes with excellent antifouling properties for dye/salt separation", Journal of Membrane Science, vol. 708, pp. 123028, 2024.
50. [50] F. Pasandidehpour, S.R. Ghaffarian, T. Mohammadi, "A Review of the Performance of Nanofiltration Membranes Modified with Inorganic, Carbon Nanomaterials and their Combinations", Journal of Water and Wastewater Science and Engineering, vol. 8, pp. 15, 2023.
51. [51] M.E. Batouti, O.M. Ahmed, R. El-Ghazaly, "Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications", Separations, vol. 9, no. 1, 2022.
52. ]52[ ز کیامهر، ب فرخی، م حسینی، 1400، تاثیر پلاسما بر خواص شیمی-فیزیکی غشاء نانوفیلتراسیون مورد استفاده در دستگاههای تصفیه آب دریا، دانشگاه اراک، pp. 1-130.
53. [1] A. Ahmad, N. C. Lah, S. Ismail, B. Ooi, "Membrane Antifouling Methods and Alternatives: Ultrasound Approach", Separation and Purification Reviews, vol. 41, no. 318, 2012.
54. [2] B. Farokhi, M. Rezaei, Z. Kiamehr and S. Hosseini, "A new approach to provide high water permeable polyethersulfone based nanofiltration membrane by air plasma treatment", International Journal of Engineering, vol. 32, no. 354, 2019.
55. [3] Z. Kiamehr, B. Farokhi, S. Hosseini, "Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with Air-Ar plasma", Korean Journal of Chemical Engineering, vol. 38, no. 114, 2021.
56. [4] A. Esfahani, L. Zhai, A. Sadmani, "Removing Heavy Metals from Landfill Leachate Using Electrospun Polyelectrolyte Fiber Mat-Laminated Ultrafiltration Membrane", Journal of Environmental Chemical Engineering, vol. 9, no. 53, 2021.
57. [5] S. Arefi, A. Khataee, M. Safarpourd, V. Vatanpour, "Modification of Polyethersulfone Ultrafiltration Membrane Using Ultrasonicassisted Functionalized MoS2 for Treatment of Oil Refinery Wastewater", Separation and Purification Technology, vol. 238, no. 6495, 2020.
58. [6] Z. Kiamehr, S. Farahani, B. Farokhi S. Hosseini, "Investigation the Effect of Ar-Air plasma Treatment on Separation Performance of Nanofiltration Membrane: Influence of Time, Power and Composition of Plasma", petroleum Research, vol. 31, no. 105, 2021.
59. [7] Z. Kiamehr, "Modification of a highly-permeable thin-film-based nanofiltration membrane (PVC) to increase efficiency and separation by Air Plasma Treatment", IEEE Trans. Plasma Sci. vol. 50, no. 2952, 2022.
60. [8] A. Broeckmann, J. Busch, T. Wintgens, W. Marquardt, "Modeling of Pore Blocking and Cake Layer Formation in Membrane Filtration for Wastewater Treatment." Desalination, vol. 189, no. 97, 2006.
61. [9] I. Soroko, Y. Bhole, A. Livingston, "Environmentally Friendly Route for the Preparation of Solvent Resistant Polyimide Nanofiltration Membranes", Green Chemistry, vol. 13, no. 162, 2011.
62. [10] Y. Zhao, X. Zhu, K. Wee, R. Bai, "Achieving Highly Effective Non-Biofouling Performance for Polypropylene Membranes Modified by Uv-Induced Surface Graft Polymerization of Two Oppositely Charged Monomers", The Journal of Physical Chemistry B, vol. 114, no. 2422, 2010.
63. [11] Y. Chiao, S. Chen, M. Sivakumar, M. Ang, T. Patra, J. Almodovar, R. Wickramasinghe, W. Hung, "Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property" Polymers, vol. 12, no. 1, 2020.
64. [12] Z. Kiamehr, S. Mozaffari, "Investigating the wetting behavior of polypropylene hydrophobic membrane using CF4 plasma treatment", Modern Physics Letters B, vol. 37, PP. 2350104, 2023.
65. [13] T. Nguyen, F. Roddick, L. Fan, "Biofouling of water treatment membranes", Membranes, vol. 2, no. 804, 2012.
66. [14] Y. Koc, A. Mello, G. McHale, M. Newton, P. Roach, N. Shirtcliffe, "Nano-scale Superhydrophobicity: Suppression of Protein Adsorption and Promotion of Flow-induced Detachment", Lab on a Chip, vol. 8, no. 528, 2008.
67. [15] P. Scopelliti, A. Borgonovo, M. Indrieri, L. Giorgetti, G. Bongiorno, R. Carbone, A. Podesta, P. Milani, "The Effect of Surface Nanometre-scale Morphology on Protein Adsorption", PloS One, vol. 5, pp. 11862, 2010.
68. [16] Q. Wang, Z. Wang, J. Wang, Z. Wu, "Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalace monitoring," RSC Adv, vol. 4, pp. 43990, 2014.
69. [17] D. Rana, T. Matsuura, "Surface modifications for antifouling membranes", Chem. Rev, vol. 110, pp. 2448, 2010.
70. [18] A. Rahimpour, "Photo-Grafting of Hydrophilic Monomers onto the Surface of Nano-Porous Pes Membranes for Improving Surface Properties", Desalination, vol. 265, no. 93, 2011.
71. [19] M. Padaki, A. Isloor, R. Kumar, A. Ismail, T. Matsuura, "Characterization and Desalination Study of Composite Nf Membranes", Journal of Membrane Science, vol. 428, no. 489, 2013.
72. [20] Z. Chong, Y. Koo, "Self-Assembling of NCQDs-TiO2 Nanocomposite on Poly(Acrylic Acid)- Grafted Polyethersulfone Membrane for Photocatalytic Removal and Membrane Filtration", Materials Today: Proceedings, vol. 46, pp. 1901, 2021.
73. [21] A. Esfahani, L. Zhai, A. Sadmani, "Filtration of Biological Sludge by Immersed Hollow-Fiber Membranes: Influence of Initial Permeability Choice of Operating Conditions", Desalination, vol. 146, pp. 427, 2002.
74. [22] Q. Gao, H. Li, X. Zeng, "Novel Nanoparticles Incorporated Polyvinylidene Fluoride Ultrafiltration 18 Membrane" Advanced Materials Research, vol. 746, pp. 390, 2013.
75. [23] J. Garcia, M. Iborra, M. Alcaina, J. Mendoza L. Pastor, "Development of Fouling-Resistant Polyethersulfone Ultrafiltration Membranes via Surface UV Photografting with Polyethylene Glycol/Aluminum Oxide Nanoparticles", Separation and Purification Technology, vol. 135, pp. 88, 2014.
76. [24] V. Goel, U. Mandal, "Surface Modification of Polysulfone Ultrafiltration Membrane by In-Situ Ferric Chloride Based Redox Polymerization of Aniline-Surface Characteristics and Flux Analyses", Korean Journal of Chemical Engineering, vol. 36, pp. 573, 2019.
77. [25] V. Kochkodan, D. Johnson, N. Hilal, "Ploymeric membranes: Surface modification for minimizing (bio) colloidal fouling," Adv. Colloid Interface Sci, vol. 206, pp. 116, 2014.
78. [26] J. Kim, B. Bruggen, "The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ. Pollut, vol. 158, pp. 2335, 2010.
79. [27] L. Ng, A. Mohammad, C. Leo, N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review", Desalination, vol. 308, no. 15, 2013.
80. [28] R. Damodar, S. You, H. Chou, "Study the self-cleaning, antibacterial and photocatalytic properties of TiO 2 entrapped PVDF membranes", J. Hazard. Mater, vol. 172, pp. 1321, 2009.
81. [29] H. Song, J. Shao, Y. He, B. Liu, X. Zhong, "Natural organic matter removal and flux decline with PEG- TiO 2-doped PVDF membranes by integration of ultrafiltration with photocatalysis", J. Membr. Sci, vol. 405, no. 48, 2012.
82. [30] V. Vatanpour, S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, "Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite", Journal of Membrane Science, vol. 375, pp. 284, 2011.
83. [31] S. Madaeni, S. Zinadini, V. Vatanpour, "A New Approach to Improve Antifouling Property of Pvdf Membrane Using in Situ Polymerization of Paa Functionalized TiO2 Nanoparticles", Journal of Membrane Science, vol. 380, pp. 155, 2011.
84. [32] V. Vatanpour, S. Madaeni, L. Rajabi, S. Zinadini, A. Derakhshan, "Boehmite Nanoparticles as a New Nanofiller for Preparation of Antifouling Mixed Matrix Membranes", Journal of Membrane Science, vol. 401, pp. 132, 2012.
85. [33] S. Zinadini, A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, "Preparation of a Novel Antifouling Mixed Matrix Pes Membrane by Embedding Graphene Oxide Nanoplates", Journal of Membrane Science, vol. 453, pp. 292, 2014.
86. [34] K. Al Mahmud, M. Kalam, H. Masjuki, H. Mobarak, N. Zulkifli, "An updated overview of diamond-like carbon coating in tribology", Crit. Rev. Solid State Mater. Sci. vol. 40, no. 90, 2015.
87. [35] R. Roy, S. Ahmed, J. Yi, M. Moon, K. Lee, Y. Jun, "Improvement of adhesion of DLC coating on nitinol substrate by hybrid ion beam deposition technique", Vac, pp. 1179-1183, 2009.
88. [36] J. Li, Z. Xu, H. Yang, C. Feng, J. Shi, "Hydrophilic micro porous PES membranes prepared by PES/PEG/DMAc casting solutions", Journal of applied polymer science, vol. 107, pp. 4100, 2008.
89. [37] L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, M. Sun, "Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue", Journal of Hazardous Materials, vol. 215, pp. 272, 2012.
90. [38] P. Qu, H. Tang, Y. Gao, L. Zhang, S. Wang, "Polyethersulfone Composite Membrane Blended with Cellulose Fibrils", BioResources, vol. 5, pp. 2323, 2010.
91. [39] D. Pavia, G. Lampman, G. Kriz, G. Randall, "Introduction to Organic Laboratory Techniques: A Small-Scale Approach: Cengage Learning", Second ed., Brooks/Cole: Belmont, CA, 2005.
92. [40] L. Ge, Z. Zhu, V. Rudolph, "Enhanced Gas Per- meability by Fabricating Functionalized Multi-Walled Carbon Nanotubes and Polyethersulfone Nanocomposite Membrane", Separation and Purification Technology, vol. 78, no. 76, 2011.
93. [41] B. Li, W. Zhao, Y. Su, Z. Jiang, X. Dong, W. Liu, "Enhanced Desulfurization Performance and Swelling Re- sistance of Asymmetric Hydrophilic Pervaporation Mem- brane Prepared Through Surface Segregation Technique", Journal of Membrane Science, vol. 326, pp. 556, 2009.
94. [42] J. Jhaveri, C. Patel, Z. Murthy, "Preparation, characterization and application of GO-TiO2 /PVC mixed matrix membranes for improvement in performance", Journal of Industrial and Engineering Chemistry, vol. 52, no. 138, 2017.
95. [43] F. Wu, R. Tseng, R. Juang, "A review and experimental verification of using chitosan and its deriva-tives as adsorbents for selected heavy metals", Journal of Environmental Management, vol. 91, pp. 798, 2010.
96. [44] V. Vatanpour, S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, "Novel anti befouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes", Separation and Purification Technology, vol. 90, no. 69, 2012.
97. [45] R. Damodar, S. You, H. Chou, "Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes", Journal of Hazardous Materials, vol. 172, pp. 1321, 2009.
98. [46] M. Li, Z. Zeng, Y. Zhao, C. Hong, Q. Li, "Development of an antimicrobial and antifouling PES membrane with ZnO/Poly(hexamethylene biguanide) nanocomposites incorporation", Chemical Engineering Journal, vol. 481, pp. 148744, 2024.
99. [47] C. Liu, M. Zhang, F. Gao, P. Hong, Z. Wang, "Ta-Fe in-situ coating PES membrane and its application in oily wastewater treatment: insight into modification and anti-fouling mechanisms", Separation and Purification Technology, vol. 346, pp. 127506, 2024.
100. [48] R. Desiriani, L. Marbelia, A. Kurniawan, I.G. Wenten, "Preparation of polyethersulfone ultrafiltration membrane coated natural additives toward antifouling and antimicrobial agents for surface water filtration", Journal of Environmental Chemical Engineering, vol. 12, pp. 111797, 2024.
101. [49] M. Zhai, Y. Li, J. Wang, F. Liu, "High-performance loose nanofiltration membranes with excellent antifouling properties for dye/salt separation", Journal of Membrane Science, vol. 708, pp. 123028, 2024.
102. [50] F. Pasandidehpour, S.R. Ghaffarian, T. Mohammadi, "A Review of the Performance of Nanofiltration Membranes Modified with Inorganic, Carbon Nanomaterials and their Combinations", Journal of Water and Wastewater Science and Engineering, vol. 8, pp. 15, 2023.
103. [51] M.E. Batouti, O.M. Ahmed, R. El-Ghazaly, "Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications", Separations, vol. 9, no. 1, 2022.
104. ]52[ ز کیامهر، ب فرخی، م حسینی، 1400، تاثیر پلاسما بر خواص شیمی-فیزیکی غشاء نانوفیلتراسیون مورد استفاده در دستگاههای تصفیه آب دریا، دانشگاه اراک، pp. 1-130.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.