1. [1] K. Hansen et al., "Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space," J. Phys. Chem. Lett. vol. 6 2326−2331, 2015. [
DOI:10.1021/acs.jpclett.5b00831] [
PMID] [
]
2. [2] F. Ren et al., "Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments," Sci. Adv. vol. 4, 1566, 2012. [
DOI:10.1126/sciadv.aaq1566] [
PMID] [
]
3. [3] Y. Huang et al., "Band gap and band alignment prediction of nitride based semiconductors using machine learning", J. Mater. Chem. C, vol. 7, 3238-3245, 2019. [
DOI:10.1039/C8TC05554H]