logo
Volume 8, Issue 2 (Autumn and Winter 2023 2024)                   JMRPh 2024, 8(2): 15-23 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoudloo A. The Study of Hole Transport in Organic Semiconductors with Time of Flight Method. JMRPh 2024; 8 (2) :15-23
URL: http://jmrph.khu.ac.ir/article-1-243-en.html
farhangian university
Abstract:   (86 Views)
In this paper, we have used the time-of-flight method of a charge packet, which has been calculated by a voltage pulse of the driving speed and mobility of holes in organic semiconductors. This technique involves applying a voltage to the anode and calculating the time delay of the injection of charge carriers to the other electrode. This method is a simple method to check the properties of charge transport in organic semiconductors. In this section, under the influence of different voltages at room temperature, using the time-of-flight method, we have calculated the mobility of holes by applying the Scheer-Montreal model in organic semiconductors.
Also, the effect of the electric field on the mobility at two voltages of 100 V and 50 V was investigated for the flight time arrangement and it was observed that the mobility of the cavity at 100 V is higher than other voltages. The mobility of the hole, which was checked at different voltages at room temperature, is the best and most appropriate mobility for the hole in organic semiconductors, which corresponds to the applied voltage of 40 V to the sample.

 
Full-Text [PDF 1269 kb]   (57 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/11/21 | Accepted: 2024/12/14 | Published: 2024/02/29

References
1. [1] Kreouzis, T., Poplavskyy, D., Tuladhar, S., Nelson J., Campbell A.J. Temperature and field dependence of hole mobility in poly(9,9-dioctylfluorene). Phys.Rev. B. 73(2), 801-809 (2016). [DOI:10.1103/PhysRevB.73.235201]
2. [2] Majewski, L. A., Schroeder, R., Voigt, M., Grell, M. Low voltage organic transistors on a polymer. J. Phys. D. 37(7), 337-347,(2014).
3. [3] Majewski, L. A., Schroeder, R., Grell, M., Turner, M. L. J. High capacitance organic field - effect transistors with modified gate insulator surface. Appl. Phys. 96(6), 435-447 (2019).
4. [4] Steudel, S., Vusser, S. D., Jonge, S. D., Janssen, D., Verlaak, SInfluence of the dielectric roughness on the performance of pentanene transistors. Appl. Phys. Lett. 85, 302-311 (2015).
5. [5] Mahmoudloo, A., Ahmadi, S. Variable range hopping transport characteristics of the charge carriers in homogenous amorphous organic semiconductors. Optik. 127, 505- 513 (2016). [DOI:10.1016/j.ijleo.2015.10.112]
6. [6] Evgeny, L. Pankratov. On increasing of density of field-effect heterotransistors in the framework of a c-multiplier, Journal of applied research on industrial engineering, 11(2), 92-118 (2022).
7. [7] Schrader, M., Körner, C., Elschner, C., Andrienko, D. Charge transport in amorphous and smectic oligothiophenes. J. Mater. Chem. 22, 119-124 (2020).
8. [8] Liu, C., Huang, K. A unified understanding of charge transport in organic semiconductors the importance of attenuated delocalization for the carriers. Materials Horizons. 4, 233-240 (2017). [DOI:10.1039/C7MH00091J]
9. [9] Sari, I. U., Ak, U. Machine efficiency measurement in industry 4.0 using fuzzy data envelopment analysis, Journal of Fuzzy Extension & Applications, 3(2), 78-89 (2022).
10. [10] Street, R., Northrup, N., Salleo, J. E. Transport in polycrystalline polymer thin - film transistors. phy. Rev. B , 71. 16, 337-348 (2013). [DOI:10.1103/PhysRevB.71.165202]
11. [11] Fritz S. E., Kelley T. W., Frisbie C. D. Effect of dielectric roughness on performance of pentacene TFTs with a polymeric smoothing layer. J. Phys. Chem.B. 109, 10574, 708-714 (2019). [DOI:10.1021/jp044318f] [PMID]
12. [12] Shin, K., Yang, C., Yang, S. Y., Jeon, H. Effect of polymer gate dielectrice roughness on pentacene field-effect transistors. Appl. Phys. Lett. 88, 072109, 351-362 (2016).
13. [13] Andrey, Y., Sosorev, M. Simple charge transport model for efficient search of high-mobility organic semiconductor crystals. Materials & Design. 192, 111-119 (2020). [DOI:10.1016/j.matdes.2020.108730]
14. [14] Veysel Tunc, A., De Sio, A., Riedel, D., Deschler, F., Da Como, E., Parisi, J., von Hauff, E. Molecular doping of low-bandgap-polymer: fullerene solar cells: Effects on transport and solar cells, Org. Electron., 13,290- 299 (2017). [DOI:10.1016/j.orgel.2011.11.014]
15. [15] Panda, A., Muniz, S. M. Smart home with neural network based object detection, Big Data and Computing Visions , 2(1), 40 - 48 (2022).
16. [16] Maennig, B., Pfeiffer, M., Nollau, A., Zhou, X., Leo K., Simon, P. Controlled p-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model, Phys. Rev. B, 64, 195-208 (2018). [DOI:10.1103/PhysRevB.64.195208]
17. [17] Osterbacka, R., Pivrikas, A. Effect of 2-D Delocalization on Charge Transport and Recombination in Bulk-Heterojunction Solar Cells, IEEE in Quantum Electronics, 16, 1738-1745 (2017). [DOI:10.1109/JSTQE.2010.2048746]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.