logo
Volume 7, Issue 1 (9-2022)                   JMRPh 2022, 7(1): 61-70 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

shojaei M, ghafour P. The Mass-Size Relation of Galaxies in Varied Environments. JMRPh 2022; 7 (1) :61-70
URL: http://jmrph.khu.ac.ir/article-1-235-en.html
Faculty of physics, Kharazmi University
Abstract:   (370 Views)
We investigate the stellar mass-size relation of galaxies and their specific star formation rate (sSFR) in both high-density and low-density environments. The study is based on data obtained from the Millennium simulation in z=0. According to our research, the size of massive elliptical and spiral galaxies is unaffected by their environment. These studies show that low-mass spiral galaxies are larger in voids than in dense environments. Also, among the elliptical galaxies, we observed a group of low-mass galaxies that were more compact despite the same mass. Due to the effects of ram pressure stripping and gravitational interaction, massive spiral galaxies tend to have lower star formation rates. The size of low-mass spiral galaxies is affected by dense environments, resulting in larger sizes in voids. Our analysis indicates that the abundance of cold gas has a greater impact on star formation rate than the halo mass of galaxies in all environments.
 
Full-Text [PDF 927 kb]   (234 Downloads)    
Type of Study: Research | Subject: General
Received: 2024/06/10 | Accepted: 2024/11/9 | Published: 2022/09/1 | ePublished: 2022/09/1

References
1. A. van der Wel, M. Franx, The Astrophysical Journal, 788:28 (19pp), 2014
2. Aikio, J., & Maehoenen, P. 1998, ApJ, 497, 534 [DOI:10.1086/305509]
3. Ayromlou M., Nelson D., Yates R. M., Kauffmann G., Renneby M.,White S D. M., 2021, MNRAS, 502, 1051 [DOI:10.1093/mnras/staa4011]
4. Ayromlou M., Nelson D., Yates R. M., Kauffmann G., White S. D. M., MNRAS, 487, 4313 (2019) [DOI:10.1093/mnras/stz1549]
5. Rasmussen et al, The Astrophysical Journal, 757:122 (2012) [DOI:10.1088/0004-637X/757/2/122]
6. Larson et al, Astrophysical Journal, Part 1, vol. 237, p. 692-707(1980) [DOI:10.1086/157917]
7. Kapferer et al, A&A, 499, 87-102 (2008) [DOI:10.1051/0004-6361/200811551]
8. Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371 [DOI:10.1086/163168]
9. Jian Fu, MNRAS 487, 4313-4331 (2019) [DOI:10.1093/mnras/stz1549]
10. John Kormendy, The Astrophysical Journal, 217:406-419, 1977. [DOI:10.1086/155589]
11. Lamiya Mowla, arXiv:1901.05014v2 [astro-ph.GA] 30 Sep 2019
12. M. Yates, MNRAS 435, 3500-3520 (2013) [DOI:10.1093/mnras/stt1542]
13. Naab, T., Johansson, P. H., Ostriker, J. P., & Efstathiou, G. 2007, ApJ, 658, 710 [DOI:10.1086/510841]
14. Robert C. Kennicutt, Jr, The Astrophysical Journal, 272:54-67, (1983) [DOI:10.1086/161261]
15. Shankar, F., Marulli, F., Bernardi, M., et al. 2013, MNRAS, 428, 109 [DOI:10.1093/mnras/sts001]
16. Shen, S., Mo, H. J., White, S. D. M., et al. 2003, MNRAS, 343, 978 [DOI:10.1046/j.1365-8711.2003.06740.x]
17. Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 54 [DOI:10.1046/j.1365-8711.2003.06292.x]
18. Shy Genel, Dylan Nelson, MNRAS 474, 3976-3996 (2018) [DOI:10.1093/mnras/stx3078]
19. Springel V. et al., 2005, Nature, 435, 629 [DOI:10.1038/nature03597] [PMID]
20. Tavasoli S., Vasei K., Mohayaee R., 2013, A&A, 553, A15 [DOI:10.1051/0004-6361/201220774]
21. van Dokkum, P. G., Whitaker, K. E., Brammer, G., et al. 2010, ApJ, 709, 1018 [DOI:10.1088/0004-637X/709/2/1018]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.