logo
دوره 7، شماره 2 - ( پاییز و زمستان 1401 )                   جلد 7 شماره 2 صفحات 20-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Boochani A, Amiri M. Half-metallic properties, optical behavior and thermodynamic stability of film surfaces [001] XVSi (X = Co, Rh) half-Heusler alloys.. JMRPh 2023; 7 (2) :1-20
URL: http://jmrph.khu.ac.ir/article-1-172-fa.html
بوچانی آرش، امیری ملیحه. ویژگی نیمه فلزی، رفتار اپتیکی و پایداری ترمودینامیکی سطوح فیلم[001] آلیاژهای نیمه هویسلری (XVSi(X=Co, Rh. نشریه پژوهش های نوین فیزیک. 1401; 7 (2) :1-20

URL: http://jmrph.khu.ac.ir/article-1-172-fa.html


دانشگاه آزاد
چکیده:   (250 مشاهده)
بر مبنای نظریه­ی تابعی چگالی و تقریب GGA، با اعمال پتانسیل بهبود یافته­ TB-mbJ خواص ساختاری، الکترونی، اپتیکی و پایداری ترمودینامیکی ترکیب­های نیم­هویسلریXVSi(X=Co, Rh)   و فیلم­های]001 [ آن­ها مورد مطالعه قرار­گرفت. این دو ترکیب هویسلری با بروز رفتار نیمه رسانایی غیر­مغناطیسی در ساختار مکعبی نوع MgAgAs-با گروه فضایی F4-3m پایدار می­باشند. به واسطه­ی دریافت پاسخ­های خوب قسمت­های حقیقی و موهومی تابع دی­الکتریک برای CoVSi و RhVSi در محدوده­ی طیف مرئی و پایین بودن تابع اتلاف الکترونی، این دو هویسلر برای کاربردهای اپتیکی در این محدوده­ی انرژی مناسب خواهند بود. بررسی نمودار پایداری فازی فیلم­های]001 [این ترکیب­ها نشان داد که هر 6 پایانش ممکن به لحاظ ترمودینامیکی پایدار خواهند بود. ساختار الکترونی این فیلم­ها نشان دهنده­ی ظهور رفتار نیمه فلزی مغناطیسی فقط برای دو پایانش]001 V-Si:CoVSi [و  ]001 V-Si:RhVSi [می­باشند. پاسخ­های تابع دی الکتریک و نیز طیف جذب این دو پایانش شبیه به حالت بالکی است اما با شدت کمتر، در حالیکه اتلاف الکترون در این دو فیلم نسبت به بالک افزایش یافته است.
متن کامل [PDF 1738 kb]   (117 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1399/10/16 | پذیرش: 1403/8/27 | انتشار: 1400/12/10 | انتشار الکترونیک: 1400/12/10

فهرست منابع
1. Li, Y., et al., "Half-metallicity of the bulk and (001) surface of NbFeCrAl and NbFeVGe Heusler compounds: a first-principles prediction." RSC advances, 7 50 (2017) 31707-31713. [DOI:10.1039/C7RA05509A]
2. Baker, Doha N. Abu, et al., "Structural, magnetic, electronic and elastic properties of half-metallic ferromagnetism full-Heusler alloys: Normal-Co2TiSn and inverse-Zr2RhGa using FP-LAPW method." Materials Chemistry and Physics, 240 (2020) 122122. [DOI:10.1016/j.matchemphys.2019.122122]
3. Picozzi, S., Continenza, A., and Freeman, A.J., "Co 2 Mn X (X= Si, Ge, Sn) Heusler compounds: An ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure." Physical Review B. 66 9 (2002) 094421. [DOI:10.1109/INTMAG.2002.1001331]
4. Casper, F., et al., "Half-Heusler compounds: novel materials for energy and spintronic applications." Semiconductor Science and Technology, 27 6 (2012) 063001. [DOI:10.1088/0268-1242/27/6/063001]
5. Chenguang, Fu., et al., "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials." Nature communications. 6 1 (2015) 1-7. [DOI:10.1038/ncomms9144] [PMID] []
6. Zheng, X. F., et al., "A review of thermoelectrics research-Recent developments and potentials for sustainable and renewable energy applications." Renewable and Sustainable Energy Reviews, 32 (2014) 486-503. [DOI:10.1016/j.rser.2013.12.053]
7. Bell, L. E., "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems." Science, 321 5895 (2008) 1457-1461. [DOI:10.1126/science.1158899] [PMID]
8. Hordequin, Ch., Nozieres, J. P., and Pierre, J., "Half metallic NiMnSb-based spin-valve structures." Journal of magnetism and magnetic materials, 183 1-2 (1998) 225-231. [DOI:10.1016/S0304-8853(97)01072-X]
9. Saito, T., et al., "Spin injection, transport, and detection at room temperature in a lateral spin transport device with Co2FeAl0. 5Si0. 5/n-GaAs schottky tunnel junctions." Applied Physics Express, 6 10 (2013) 103006. [DOI:10.7567/APEX.6.103006]
10. Klimczuk, T., et al., "Superconductivity in the Heusler family of intermetallics." Physical Review B. 85 17 (2012) 174505. [DOI:10.1103/PhysRevB.85.174505]
11. Ran He., et al., "Studies on mechanical properties of thermoelectric materials by nanoindentation." physica status solidi (a), 212 10 (2015) 2191-2195. [DOI:10.1002/pssa.201532045]
12. Huang, L., et al., "Recent progress in half-Heusler thermoelectric materials." Materials Research Bulletin, 76 (2016) 107-112. [DOI:10.1016/j.materresbull.2015.11.032]
13. Zhu, T., et al., "High efficiency half‐Heusler thermoelectric materials for energy harvesting." Advanced Energy Materials, 5 19 (2015) 1500588. [DOI:10.1002/aenm.201500588]
14. Chen, S., and Ren, Z., "Recent progress of half-Heusler for moderate temperature thermoelectric applications." Materials Today, 16 10 (2013) 387-395. [DOI:10.1016/j.mattod.2013.09.015]
15. Hu, Y., and Zhang, J. M., "Thermodynamic stability, magnetism and half-metallicity of various (100) surfaces of Heusler alloy Ti2FeSn." Materials Chemistry and Physics, 192 (2017) 253-259. [DOI:10.1016/j.matchemphys.2017.01.084]
16. Geng, X., et al., "Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction." Nature communications, 7 1 (2016) 1-7. [DOI:10.1038/ncomms10672] [PMID] []
17. Ma, J., et al., "Computational investigation of half-Heusler compounds for spintronics applications." Physical Review B. 95 2 (2017) 024411. [DOI:10.1103/PhysRevB.95.024411]
18. Shi, F., et al., "Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors." Journal of Applied Physics, 122 21 (2017) 215701. [DOI:10.1063/1.4998145]
19. Chibani, S., et al. "Structural, elastic, electronic and transport properties of CoVX (X= Ge and Si) compounds: A DFT prediction." Computational Condensed Matter, (2020) e00475. [DOI:10.1016/j.cocom.2020.e00475]
20. Wang, L. L., et al, "Thermoelectric performance of half-Heusler compounds TiNiSn and TiCoSb." Journal of Applied Physics, 105 1 (2009) 013709. [DOI:10.1063/1.3056384]
21. Kong, B., et al., "Structural, mechanical, thermodynamics properties and phase transition of FeVSb." Physica B: Condensed Matter, 406 15-16 (2011) 3003-3010. [DOI:10.1016/j.physb.2011.04.067]
22. Kong, F., et al., "Thermoelectric and thermodynamic properties of half-Heulser alloy YPdSb from first principles calculations." Journal of Solid State Chemistry ,196 (2012) 511-517. [DOI:10.1016/j.jssc.2012.07.010]
23. Qiu, P., et al., "Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys." Applied Physics Letters, 96 15 (2010) 152105. [DOI:10.1063/1.3396981]
24. Yang, J., et al., "Evaluation of half‐Heusler compounds as thermoelectric materials based on the calculated electrical transport properties." Advanced Functional Materials, 1819 (2008) 2880-2888. [DOI:10.1002/adfm.200701369]
25. Kieven, D., et al., "I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations." Physical Review B, 81 7 (2010) 075208. [DOI:10.1103/PhysRevB.81.075208]
26. Yan, F., et al., "Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements." Nature communications, 6 1 (2015) 1-8. [DOI:10.1038/ncomms8308] [PMID]
27. Yang, J., et al. "Evaluation of half‐Heusler compounds as thermoelectric materials based on the calculated electrical transport properties." Advanced Functional Materials, 18 19 (2008) 2880-2888. [DOI:10.1002/adfm.200701369]
28. Schwarz, K., and Blaha, P., "Description of an LAPW DF program (WIEN95)." Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials. Springer, Berlin, Heidelberg, 1996 139-153. [DOI:10.1007/978-3-642-61478-1_9]
29. Sjöstedt, E., Nordström, L., and Singh, D. J., "An alternative way of linearizing the augmented plane-wave method." Solid state communications, 114 1 (2000) 15-20. [DOI:10.1016/S0038-1098(99)00577-3]
30. Koller, D., Tran, F., and Blaha, P., "Improving the modified Becke-Johnson exchange potential." Physical Review B, 85 15 (2012) 155109. [DOI:10.1103/PhysRevB.85.155109]
31. Wimmer, E., et al., "Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule." Physical Review B, 24 2 (1981) 864. [DOI:10.1103/PhysRevB.24.864]
32. Monkhorst, H. J., and Pack, J. D., "Special points for Brillouin-zone integrations." Physical review B, 13 12 (1976) 5188. [DOI:10.1103/PhysRevB.13.5188]
33. Murnaghan, F. D., "The compressibility of media under extreme pressures." Proceedings of the national academy of sciences of the United States of America, 30 9 (1944) 244. [DOI:10.1073/pnas.30.9.244] [PMID] []
34. Wang, Y., et al., "First-principles studies of polar perovskite KTaO 3 surfaces: structural reconstruction, charge compensation, and stability diagram." Physical Chemistry Chemical Physics, 20 27 (2018) 18515-18527. [DOI:10.1039/C8CP02540A] [PMID]
35. Shi, H., et al., "Prospective high thermoelectric performance of the heavily p-doped half-Heusler compound CoVSn." Physical Review B, 95 19 (2017) 195207. [DOI:10.1103/PhysRevB.95.195207]
36. Reuter, K., and Scheffler M., "Composition, structure, and stability of RuO 2 (110) as a function of oxygen pressure." Physical Review B, 65 3 (2001) 035406.
37. Baima, J., et al., "Surface thermodynamics of silicate compounds: the case of Zn 2 SiO 4 (001) surfaces and thin films." Physical Chemistry Chemical Physics, 21 24 (2019) 13287-13295. [DOI:10.1039/C9CP02039J] [PMID]
38. Sarkar, B. K., et al., "Optical Properties Of Cd 1-x Zn x Se From Density Functional Theory." TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham, 2014. [DOI:10.1007/978-3-319-48237-8_136]
39. Bobrov, V. B., et al., "Kramers-Kronig relations for the dielectric function and the static conductivity of Coulomb systems." EPL (Europhysics Letters) 90 1 (2010) 10003. [DOI:10.1209/0295-5075/90/10003]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.