1. Li, Y., et al., "Half-metallicity of the bulk and (001) surface of NbFeCrAl and NbFeVGe Heusler compounds: a first-principles prediction." RSC advances, 7 50 (2017) 31707-31713. [
DOI:10.1039/C7RA05509A]
2. Baker, Doha N. Abu, et al., "Structural, magnetic, electronic and elastic properties of half-metallic ferromagnetism full-Heusler alloys: Normal-Co2TiSn and inverse-Zr2RhGa using FP-LAPW method." Materials Chemistry and Physics, 240 (2020) 122122. [
DOI:10.1016/j.matchemphys.2019.122122]
3. Picozzi, S., Continenza, A., and Freeman, A.J., "Co 2 Mn X (X= Si, Ge, Sn) Heusler compounds: An ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure." Physical Review B. 66 9 (2002) 094421. [
DOI:10.1109/INTMAG.2002.1001331]
4. Casper, F., et al., "Half-Heusler compounds: novel materials for energy and spintronic applications." Semiconductor Science and Technology, 27 6 (2012) 063001. [
DOI:10.1088/0268-1242/27/6/063001]
5. Chenguang, Fu., et al., "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials." Nature communications. 6 1 (2015) 1-7. [
DOI:10.1038/ncomms9144] [
PMID] [
]
6. Zheng, X. F., et al., "A review of thermoelectrics research-Recent developments and potentials for sustainable and renewable energy applications." Renewable and Sustainable Energy Reviews, 32 (2014) 486-503. [
DOI:10.1016/j.rser.2013.12.053]
7. Bell, L. E., "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems." Science, 321 5895 (2008) 1457-1461. [
DOI:10.1126/science.1158899] [
PMID]
8. Hordequin, Ch., Nozieres, J. P., and Pierre, J., "Half metallic NiMnSb-based spin-valve structures." Journal of magnetism and magnetic materials, 183 1-2 (1998) 225-231. [
DOI:10.1016/S0304-8853(97)01072-X]
9. Saito, T., et al., "Spin injection, transport, and detection at room temperature in a lateral spin transport device with Co2FeAl0. 5Si0. 5/n-GaAs schottky tunnel junctions." Applied Physics Express, 6 10 (2013) 103006. [
DOI:10.7567/APEX.6.103006]
10. Klimczuk, T., et al., "Superconductivity in the Heusler family of intermetallics." Physical Review B. 85 17 (2012) 174505. [
DOI:10.1103/PhysRevB.85.174505]
11. Ran He., et al., "Studies on mechanical properties of thermoelectric materials by nanoindentation." physica status solidi (a), 212 10 (2015) 2191-2195. [
DOI:10.1002/pssa.201532045]
12. Huang, L., et al., "Recent progress in half-Heusler thermoelectric materials." Materials Research Bulletin, 76 (2016) 107-112. [
DOI:10.1016/j.materresbull.2015.11.032]
13. Zhu, T., et al., "High efficiency half‐Heusler thermoelectric materials for energy harvesting." Advanced Energy Materials, 5 19 (2015) 1500588. [
DOI:10.1002/aenm.201500588]
14. Chen, S., and Ren, Z., "Recent progress of half-Heusler for moderate temperature thermoelectric applications." Materials Today, 16 10 (2013) 387-395. [
DOI:10.1016/j.mattod.2013.09.015]
15. Hu, Y., and Zhang, J. M., "Thermodynamic stability, magnetism and half-metallicity of various (100) surfaces of Heusler alloy Ti2FeSn." Materials Chemistry and Physics, 192 (2017) 253-259. [
DOI:10.1016/j.matchemphys.2017.01.084]
16. Geng, X., et al., "Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction." Nature communications, 7 1 (2016) 1-7. [
DOI:10.1038/ncomms10672] [
PMID] [
]
17. Ma, J., et al., "Computational investigation of half-Heusler compounds for spintronics applications." Physical Review B. 95 2 (2017) 024411. [
DOI:10.1103/PhysRevB.95.024411]
18. Shi, F., et al., "Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors." Journal of Applied Physics, 122 21 (2017) 215701. [
DOI:10.1063/1.4998145]
19. Chibani, S., et al. "Structural, elastic, electronic and transport properties of CoVX (X= Ge and Si) compounds: A DFT prediction." Computational Condensed Matter, (2020) e00475. [
DOI:10.1016/j.cocom.2020.e00475]
20. Wang, L. L., et al, "Thermoelectric performance of half-Heusler compounds TiNiSn and TiCoSb." Journal of Applied Physics, 105 1 (2009) 013709. [
DOI:10.1063/1.3056384]
21. Kong, B., et al., "Structural, mechanical, thermodynamics properties and phase transition of FeVSb." Physica B: Condensed Matter, 406 15-16 (2011) 3003-3010. [
DOI:10.1016/j.physb.2011.04.067]
22. Kong, F., et al., "Thermoelectric and thermodynamic properties of half-Heulser alloy YPdSb from first principles calculations." Journal of Solid State Chemistry ,196 (2012) 511-517. [
DOI:10.1016/j.jssc.2012.07.010]
23. Qiu, P., et al., "Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys." Applied Physics Letters, 96 15 (2010) 152105. [
DOI:10.1063/1.3396981]
24. Yang, J., et al., "Evaluation of half‐Heusler compounds as thermoelectric materials based on the calculated electrical transport properties." Advanced Functional Materials, 1819 (2008) 2880-2888. [
DOI:10.1002/adfm.200701369]
25. Kieven, D., et al., "I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations." Physical Review B, 81 7 (2010) 075208. [
DOI:10.1103/PhysRevB.81.075208]
26. Yan, F., et al., "Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements." Nature communications, 6 1 (2015) 1-8. [
DOI:10.1038/ncomms8308] [
PMID]
27. Yang, J., et al. "Evaluation of half‐Heusler compounds as thermoelectric materials based on the calculated electrical transport properties." Advanced Functional Materials, 18 19 (2008) 2880-2888. [
DOI:10.1002/adfm.200701369]
28. Schwarz, K., and Blaha, P., "Description of an LAPW DF program (WIEN95)." Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials. Springer, Berlin, Heidelberg, 1996 139-153. [
DOI:10.1007/978-3-642-61478-1_9]
29. Sjöstedt, E., Nordström, L., and Singh, D. J., "An alternative way of linearizing the augmented plane-wave method." Solid state communications, 114 1 (2000) 15-20. [
DOI:10.1016/S0038-1098(99)00577-3]
30. Koller, D., Tran, F., and Blaha, P., "Improving the modified Becke-Johnson exchange potential." Physical Review B, 85 15 (2012) 155109. [
DOI:10.1103/PhysRevB.85.155109]
31. Wimmer, E., et al., "Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule." Physical Review B, 24 2 (1981) 864. [
DOI:10.1103/PhysRevB.24.864]
32. Monkhorst, H. J., and Pack, J. D., "Special points for Brillouin-zone integrations." Physical review B, 13 12 (1976) 5188. [
DOI:10.1103/PhysRevB.13.5188]
33. Murnaghan, F. D., "The compressibility of media under extreme pressures." Proceedings of the national academy of sciences of the United States of America, 30 9 (1944) 244. [
DOI:10.1073/pnas.30.9.244] [
PMID] [
]
34. Wang, Y., et al., "First-principles studies of polar perovskite KTaO 3 surfaces: structural reconstruction, charge compensation, and stability diagram." Physical Chemistry Chemical Physics, 20 27 (2018) 18515-18527. [
DOI:10.1039/C8CP02540A] [
PMID]
35. Shi, H., et al., "Prospective high thermoelectric performance of the heavily p-doped half-Heusler compound CoVSn." Physical Review B, 95 19 (2017) 195207. [
DOI:10.1103/PhysRevB.95.195207]
36. Reuter, K., and Scheffler M., "Composition, structure, and stability of RuO 2 (110) as a function of oxygen pressure." Physical Review B, 65 3 (2001) 035406.
37. Baima, J., et al., "Surface thermodynamics of silicate compounds: the case of Zn 2 SiO 4 (001) surfaces and thin films." Physical Chemistry Chemical Physics, 21 24 (2019) 13287-13295. [
DOI:10.1039/C9CP02039J] [
PMID]
38. Sarkar, B. K., et al., "Optical Properties Of Cd 1-x Zn x Se From Density Functional Theory." TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham, 2014. [
DOI:10.1007/978-3-319-48237-8_136]
39. Bobrov, V. B., et al., "Kramers-Kronig relations for the dielectric function and the static conductivity of Coulomb systems." EPL (Europhysics Letters) 90 1 (2010) 10003. [
DOI:10.1209/0295-5075/90/10003]